纳米氧化钴对组蛋白H3修饰的影响及其机制

赵晓旭, 李纹, 侯巧利, 吕源财. 纳米氧化钴对组蛋白H3修饰的影响及其机制[J]. 生态毒理学报, 2023, 18(3): 336-346. doi: 10.7524/AJE.1673-5897.20220805001
引用本文: 赵晓旭, 李纹, 侯巧利, 吕源财. 纳米氧化钴对组蛋白H3修饰的影响及其机制[J]. 生态毒理学报, 2023, 18(3): 336-346. doi: 10.7524/AJE.1673-5897.20220805001
Zhao Xiaoxu, Li Wen, Hou Qiaoli, Lv Yuancai. Effects of Cobalt Oxide Nanoparticles on Histone H3 Modification and Its Mechanism[J]. Asian journal of ecotoxicology, 2023, 18(3): 336-346. doi: 10.7524/AJE.1673-5897.20220805001
Citation: Zhao Xiaoxu, Li Wen, Hou Qiaoli, Lv Yuancai. Effects of Cobalt Oxide Nanoparticles on Histone H3 Modification and Its Mechanism[J]. Asian journal of ecotoxicology, 2023, 18(3): 336-346. doi: 10.7524/AJE.1673-5897.20220805001

纳米氧化钴对组蛋白H3修饰的影响及其机制

    作者简介: 赵晓旭(1984—),男,博士,研究方向为环境毒理学,E-mail:zhaoxiaoxu0711@126.com
    通讯作者: 赵晓旭, E-mail: zhaoxiaoxu0711@126.com 吕源财, E-mail: yclv@fzu.edu.cn
  • 基金项目:

    国家自然科学基金青年基金资助项目(31801462);福建省自然科学基金面上项目(2021J011105);福建省自然科学基金青年基金资助项目(2020J05211);福建省大学生创新创业训练项目(S202111498004);莆田学院引进人才科研启动项目(2018055)

  • 中图分类号: X171.5

Effects of Cobalt Oxide Nanoparticles on Histone H3 Modification and Its Mechanism

    Corresponding authors: Zhao Xiaoxu, zhaoxiaoxu0711@126.com ;  Lv Yuancai, yclv@fzu.edu.cn
  • Fund Project:
  • 摘要: 纳米氧化钴因其优异的性能被广泛应用于组织工程等领域,然而,广泛的应用增加了其对人类健康和环境暴露的风险。本文在详细表征纳米氧化钴的基础上,选用人永生化角质形成细胞HaCaT为模型,采用台盼蓝染色法检测纳米氧化钴对细胞生存率的影响,利用蛋白免疫印记法观察纳米氧化钴对组蛋白H3常见修饰位点的影响,通过对细胞内蓄积量、组蛋白H3修饰水平及DNA损伤的定量分析,探究了纳米氧化钴对组蛋白H3修饰的影响机制。表征结果显示,在分散介质中纳米氧化钴明显团聚,比表面积减少,二次粒径增大。生存率测定发现,实验最大剂量(1 mg·mL-1)作用24 h后,细胞生存率无明显变化。0.1 mg·mL-1纳米氧化钴暴露1 h后,诱导了组蛋白H3第10位丝氨酸的磷酸化(p-H3S10)、第9位赖氨酸的乙酰化(Ac-H3K9)及第4位赖氨酸的三甲基化(Me3-H3K4)的上调,并持续长达24 h。同时,观察到第14位赖氨酸的乙酰化(Ac-H3K14)在纳米氧化钴暴露4 h后明显上调。第27位赖氨酸的三甲基化(Me3-H3K27)升高4 h后出现下降趋势。定量分析表明,纳米氧化钴的细胞内蓄积是其诱导组蛋白H3修饰变化的关键因素之一,且组蛋白H3修饰可能涉及DNA损伤修复途径。本研究通过体外实验证明了纳米氧化钴对组蛋白H3修饰的影响及可能的机制,为进一步评价纳米氧化钴的生物毒性及致癌风险提供了科学依据。
  • 加载中
  • Janković N Z, Plata D L. Engineered nanomaterials in the context of global element cycles[J]. Environmental Science:Nano, 2019, 6(9):2697-2711
    Aitken R J, Chaudhry M Q, Boxall A B, et al. Manufacture and use of nanomaterials:Current status in the UK and global trends[J]. Occupational Medicine, 2006, 56(5):300-306
    Li W Y, Xu L N, Chen J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors[J]. Advanced Functional Materials, 2005, 15(5):851-857
    Li Y G, Tan B, Wu Y Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability[J]. Nano Letters, 2008, 8(1):265-270
    Hoseinzadeh E, Makhdoumi P, Taha P, et al. A review on nano-antimicrobials:Metal nanoparticles, methods and mechanisms[J]. Current Drug Metabolism, 2017, 18(2):120-128
    Tonelli A M, Venturini J, Arcaro S, et al. Novel core-shell nanocomposites based on TiO2-covered magnetic Co3O4 for biomedical applications[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2020, 108(5):1879-1887
    Pankhurst Q A, Thanh N K T, Jones S K, et al. Progress in applications of magnetic nanoparticles in biomedicine[J]. Journal of Physics D:Applied Physics, 2009, 42(22):224001
    Zhao F, Zhao Y, Liu Y, et al. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials[J]. Small, 2011, 7(10):1322-1337
    Sengul A B, Asmatulu E. Toxicity of metal and metal oxide nanoparticles:A review[J]. Environmental Chemistry Letters, 2020, 18(5):1659-1683
    Liu N, Tang M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles[J]. Journal of Applied Toxicology, 2020, 40(1):16-36
    McShan D, Ray P C, Yu H T. Molecular toxicity mechanism of nanosilver[J]. Journal of Food and Drug Analysis, 2014, 22(1):116-127
    Wong B S E, Hu Q D, Baeg G H. Epigenetic modulations in nanoparticle-mediated toxicity[J]. Food and Chemical Toxicology, 2017, 109:746-752
    Stoccoro A, Karlsson H L, Coppedè F, et al. Epigenetic effects of nano-sized materials[J]. Toxicology, 2013, 313(1):3-14
    Shyamasundar S, Ng C T, Yung L Y, et al. Epigenetic mechanisms in nanomaterial-induced toxicity[J]. Epigenomics, 2015, 7(3):395-411
    Berger S L. The complex language of chromatin regulation during transcription[J]. Nature, 2007, 447(7143):407-412
    Kouzarides T. Chromatin modifications and their function[J]. Cell, 2007, 128(4):693-705
    Price B D, D'Andrea A D. Chromatin remodeling at DNA double-strand breaks[J]. Cell, 2013, 152(6):1344-1354
    Wang S Y, Meyer D H, Schumacher B. H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage[J]. Nature Structural & Molecular Biology, 2020, 27(12):1165-1177
    Lawrence M, Daujat S, Schneider R. Lateral thinking:How histone modifications regulate gene expression[J]. Trends in Genetics, 2016, 32(1):42-56
    Zhao X X, Ibuki Y. Evaluating the toxicity of silver nanoparticles by detecting phosphorylation of histone H3 in combination with flow cytometry side-scattered light[J]. Environmental Science & Technology, 2015, 49(8):5003-5012
    Zhao X X, Toyooka T, Ibuki Y. Silver nanoparticle-induced phosphorylation of histone H3 at serine 10 is due to dynamic changes in actin filaments and the activation of Aurora kinases[J]. Toxicology Letters, 2017, 276:39-47
    Liu Y, Mayo M W, Nagji A S, et al. BRMS1 suppresses lung cancer metastases through an E3 ligase function on histone acetyltransferase p300[J]. Cancer Research, 2013, 73(4):1308-1317
    Jin K L, Pak J H, Park J Y, et al. Expression profile of histone deacetylases 1, 2 and 3 in ovarian cancer tissues[J]. Journal of Gynecologic Oncology, 2008, 19(3):185-190
    Kumar A, Kumari N, Nallabelli N, et al. Expression profile of H3K4 demethylases with their clinical and pathological correlation in patients with clear cell renal cell carcinoma[J]. Gene, 2020, 739:144498
    de la Cruz X, Lois S, Sánchez-Molina S, et al. Do protein motifs read the histone code?[J]. BioEssays, 2005, 27(2):164-175
    Oh N, Park J H. Endocytosis and exocytosis of nanoparticles in mammalian cells[J]. International Journal of Nanomedicine, 2014, 9(Suppl.1):51-63
    Liu W, Wu Y, Wang C, et al. Impact of silver nanoparticles on human cells:Effect of particle size[J]. Nanotoxicology, 2010, 4(3):319-330
    Donaldson K, Aitken R, Tran L, et al. Carbon nanotubes:A review of their properties in relation to pulmonary toxicology and workplace safety[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2006, 92(1):5-22
    Abudayyak M, Gurkaynak T A, Özhan G. In vitro toxicological assessment of cobalt ferrite nanoparticles in several mammalian cell types[J]. Biological Trace Element Research, 2017, 175(2):458-465
    Abudayyak M, Gurkaynak T A, Özhan G. In vitro evaluation of cobalt oxide nanoparticle-induced toxicity[J]. Toxicology and Industrial Health, 2017, 33(8):646-654
    Rossetto D, Avvakumov N, Côté J. Histone phosphorylation:A chromatin modification involved in diverse nuclear events[J]. Epigenetics, 2012, 7(10):1098-1108
    Li J, Gorospe M, Barnes J, et al. Tumor promoter arsenite stimulates histone H3 phosphoacetylation of proto-oncogenes c-fos and c-Jun chromatin in human diploid fibroblasts[J]. The Journal of Biological Chemistry, 2003, 278(15):13183-13191
    Ke Q D, Li Q, Ellen T P, et al. Nickel compounds induce phosphorylation of histone H3 at serine 10 by activating JNK-MAPK pathway[J]. Carcinogenesis, 2008, 29(6):1276-1281
    Lo W S, Trievel R C, Rojas J R, et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14[J]. Molecular Cell, 2000, 5(6):917-926
    Salvador L M, Park Y, Cottom J, et al. Follicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells[J]. The Journal of Biological Chemistry, 2001, 276(43):40146-40155
    Karmodiya K, Krebs A R, Oulad-Abdelghani M, et al. H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells[J]. BMC Genomics, 2012, 13:424
    Zhang T Y, Cooper S, Brockdorff N. The interplay of histone modifications-writers that read[J]. EMBO Reports, 2015, 16(11):1467-1481
    Ayrapetov M K, Gursoy-Yuzugullu O, Xu C, et al. DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25):9169-9174
    van Attikum H, Gasser S M. Crosstalk between histone modifications during the DNA damage response[J]. Trends in Cell Biology, 2009, 19(5):207-217
  • 加载中
计量
  • 文章访问数:  995
  • HTML全文浏览数:  995
  • PDF下载数:  109
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-08-05
赵晓旭, 李纹, 侯巧利, 吕源财. 纳米氧化钴对组蛋白H3修饰的影响及其机制[J]. 生态毒理学报, 2023, 18(3): 336-346. doi: 10.7524/AJE.1673-5897.20220805001
引用本文: 赵晓旭, 李纹, 侯巧利, 吕源财. 纳米氧化钴对组蛋白H3修饰的影响及其机制[J]. 生态毒理学报, 2023, 18(3): 336-346. doi: 10.7524/AJE.1673-5897.20220805001
Zhao Xiaoxu, Li Wen, Hou Qiaoli, Lv Yuancai. Effects of Cobalt Oxide Nanoparticles on Histone H3 Modification and Its Mechanism[J]. Asian journal of ecotoxicology, 2023, 18(3): 336-346. doi: 10.7524/AJE.1673-5897.20220805001
Citation: Zhao Xiaoxu, Li Wen, Hou Qiaoli, Lv Yuancai. Effects of Cobalt Oxide Nanoparticles on Histone H3 Modification and Its Mechanism[J]. Asian journal of ecotoxicology, 2023, 18(3): 336-346. doi: 10.7524/AJE.1673-5897.20220805001

纳米氧化钴对组蛋白H3修饰的影响及其机制

    通讯作者: 赵晓旭, E-mail: zhaoxiaoxu0711@126.com ;  吕源财, E-mail: yclv@fzu.edu.cn
    作者简介: 赵晓旭(1984—),男,博士,研究方向为环境毒理学,E-mail:zhaoxiaoxu0711@126.com
  • 1. 福建省新型污染物生态毒理效应与控制重点实验室, 莆田 351100;
  • 2. 生态环境及其信息图谱福建省高等学校重点实验室, 莆田 351100;
  • 3. 莆田学院环境与生物工程学院, 莆田 351100;
  • 4. 福州大学环境与安全工程学院, 福州 350108
基金项目:

国家自然科学基金青年基金资助项目(31801462);福建省自然科学基金面上项目(2021J011105);福建省自然科学基金青年基金资助项目(2020J05211);福建省大学生创新创业训练项目(S202111498004);莆田学院引进人才科研启动项目(2018055)

摘要: 纳米氧化钴因其优异的性能被广泛应用于组织工程等领域,然而,广泛的应用增加了其对人类健康和环境暴露的风险。本文在详细表征纳米氧化钴的基础上,选用人永生化角质形成细胞HaCaT为模型,采用台盼蓝染色法检测纳米氧化钴对细胞生存率的影响,利用蛋白免疫印记法观察纳米氧化钴对组蛋白H3常见修饰位点的影响,通过对细胞内蓄积量、组蛋白H3修饰水平及DNA损伤的定量分析,探究了纳米氧化钴对组蛋白H3修饰的影响机制。表征结果显示,在分散介质中纳米氧化钴明显团聚,比表面积减少,二次粒径增大。生存率测定发现,实验最大剂量(1 mg·mL-1)作用24 h后,细胞生存率无明显变化。0.1 mg·mL-1纳米氧化钴暴露1 h后,诱导了组蛋白H3第10位丝氨酸的磷酸化(p-H3S10)、第9位赖氨酸的乙酰化(Ac-H3K9)及第4位赖氨酸的三甲基化(Me3-H3K4)的上调,并持续长达24 h。同时,观察到第14位赖氨酸的乙酰化(Ac-H3K14)在纳米氧化钴暴露4 h后明显上调。第27位赖氨酸的三甲基化(Me3-H3K27)升高4 h后出现下降趋势。定量分析表明,纳米氧化钴的细胞内蓄积是其诱导组蛋白H3修饰变化的关键因素之一,且组蛋白H3修饰可能涉及DNA损伤修复途径。本研究通过体外实验证明了纳米氧化钴对组蛋白H3修饰的影响及可能的机制,为进一步评价纳米氧化钴的生物毒性及致癌风险提供了科学依据。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回