基于蛋白质组学研究微/纳塑料对巨噬细胞的潜在影响

王小霞, 官司敏, 杨贺然, 何欢, 任肖敏, 潘学军. 基于蛋白质组学研究微/纳塑料对巨噬细胞的潜在影响[J]. 生态毒理学报, 2023, 18(3): 347-356. doi: 10.7524/AJE.1673-5897.20221005001
引用本文: 王小霞, 官司敏, 杨贺然, 何欢, 任肖敏, 潘学军. 基于蛋白质组学研究微/纳塑料对巨噬细胞的潜在影响[J]. 生态毒理学报, 2023, 18(3): 347-356. doi: 10.7524/AJE.1673-5897.20221005001
Wang Xiaoxia, Guan Simin, Yang Heran, He Huan, Ren Xiaomin, Pan Xuejun. Potential Effects of Micro- and Nano-Plastics on Macrophages Based on Proteomics[J]. Asian journal of ecotoxicology, 2023, 18(3): 347-356. doi: 10.7524/AJE.1673-5897.20221005001
Citation: Wang Xiaoxia, Guan Simin, Yang Heran, He Huan, Ren Xiaomin, Pan Xuejun. Potential Effects of Micro- and Nano-Plastics on Macrophages Based on Proteomics[J]. Asian journal of ecotoxicology, 2023, 18(3): 347-356. doi: 10.7524/AJE.1673-5897.20221005001

基于蛋白质组学研究微/纳塑料对巨噬细胞的潜在影响

    作者简介: 王小霞(1996—),女,博士研究生,研究方向为新污染物的健康风险评估,E-mail:xwangkust@163.com
    通讯作者: 任肖敏, E-mail: 412656694@qq.com 潘学军, E-mail: xjpan@kust.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(22276082);国家自然科学基金面上项目(22176076);云南省科技计划项目(202101BE070001-002);云南省基础研究计划-青年项目(202201AU070157)

  • 中图分类号: X171.5

Potential Effects of Micro- and Nano-Plastics on Macrophages Based on Proteomics

    Corresponding authors: Ren Xiaomin, 412656694@qq.com ;  Pan Xuejun, xjpan@kust.edu.cn
  • Fund Project:
  • 摘要: 微塑料作为一种新型环境污染物,其对动物和人体的潜在健康风险受到了广泛的关注。本研究基于蛋白质组学分析研究了2种尺寸(3 μm和75 nm)聚苯乙烯微/纳塑料对小鼠巨噬细胞(RAW264.7)生物学功能的影响。研究结果表明3 μm聚苯乙烯微塑料(124)导致差异表达蛋白质的数量相比于75 nm聚苯乙烯纳塑料(152)更少。通过对差异表达蛋白质进行GO(gene ontology)功能注释分析,发现3 μm聚苯乙烯微塑料和75 nm聚苯乙烯纳塑料都可以对巨噬细胞的生物学过程、细胞组分和分子功能这三大生物学功能产生影响。进一步通过对差异表达蛋白质进行KEGG(kyoto encyclopedia of genes and genomes)信号通路富集分析,发现3 μm聚苯乙烯微塑料和75 nm聚苯乙烯纳塑料对巨噬细胞炎症反应及调节炎症反应相关的信号通路的影响非常显著。综合以上结果,本研究发现微/纳塑料对巨噬细胞的多个生物学功能具有潜在影响。推测巨噬细胞功能受损可能会影响其在免疫反应中的调节功能,进而导致机体炎症的发生和发展。本研究为微/纳塑料的人体健康潜在危害提供了科学依据和理论基础。
  • 加载中
  • Suaria G, Avio C G, Mineo A, et al. The Mediterranean Plastic Soup:Synthetic polymers in Mediterranean surface waters[J]. Scientific Reports, 2016, 6:37551
    Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838
    Auta H S, Emenike C U, Fauziah S H. Distribution and importance of microplastics in the marine environment:A review of the sources, fate, effects, and potential solutions[J]. Environment International, 2017, 102:165-176
    Lambert S, Wagner M. Characterisation of nanoplastics during the degradation of polystyrene[J]. Chemosphere, 2016, 145:265-268
    Alimi O S, Farner Budarz J, Hernandez L M, et al. Microplastics and nanoplastics in aquatic environments:Aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4):1704-1724
    Zhang K, Shi H H, Peng J P, et al. Microplastic pollution in China's inland water systems:A review of findings, methods, characteristics, effects, and management[J]. Science of the Total Environment, 2018, 630:1641-1653
    Zhang G S, Liu Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642:12-20
    Chu J H, Liu H M, Salvo A. Air pollution as a determinant of food delivery and related plastic waste[J]. Nature Human Behaviour, 2021, 5(2):212-220
    Rahman A, Sarkar A, Yadav O P, et al. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps:A scoping review[J]. Science of the Total Environment, 2021, 757:143872
    Zhang Q, Xu E G, Li J N, et al. A review of microplastics in table salt, drinking water, and air:Direct human exposure[J]. Environmental Science & Technology, 2020, 54(7):3740-3751
    Ranjan V P, Joseph A, Goel S. Microplastics and other harmful substances released from disposable paper cups into hot water[J]. Journal of Hazardous Materials, 2021, 404:124118
    Zuccarello P, Ferrante M, Cristaldi A, et al. Exposure to microplastics (<10μm) associated to plastic bottles mineral water consumption:The first quantitative study[J]. Water Research, 2019, 157:365-371
    Fadare O O, Wan B, Guo L H, et al. Microplastics from consumer plastic food containers:Are we consuming it?[J]. Chemosphere, 2020, 253:126787
    Yang D Q, Shi H H, Li L, et al. Microplastic pollution in table salts from China[J]. Environmental Science & Technology, 2015, 49(22):13622-13627
    Liebezeit G, Liebezeit E. Non-pollen particulates in honey and sugar[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2013, 30(12):2136-2140
    Catarino A I, Macchia V, Sanderson W G, et al. Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal[J]. Environmental Pollution, 2018, 237:675-684
    Schwabl P, Köppel S, Königshofer P, et al. Detection of various microplastics in human stool:A prospective case series[J]. Annals of Internal Medicine, 2019, 171(7):453-457
    Yan Z H, Liu Y F, Zhang T, et al. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status[J]. Environmental Science & Technology, 2022, 56(1):414-421
    Peterson L W, Artis D. Intestinal epithelial cells:Regulators of barrier function and immune homeostasis[J]. Nature Reviews Immunology, 2014, 14(3):141-153
    Gerbe F, Legraverend C, Jay P. The intestinal epithelium tuft cells:Specification and function[J]. Cellular and Molecular Life Sciences, 2012, 69(17):2907-2917
    Ulluwishewa D, Anderson R C, McNabb W C, et al. Regulation of tight junction permeability by intestinal bacteria and dietary components[J]. The Journal of Nutrition, 2011, 141(5):769-776
    Zhang S Z, Zhao X H, Zhang D C. Retraction Note:Cellular and molecular immunopathogenesis of ulcerative colitis[J]. Cellular & Molecular Immunology, 2014, 11(3):314
    Cao X Q, Han Y H, Gu M, et al. Foodborne titanium dioxide nanoparticles induce stronger adverse effects in obese mice than non-obese mice:Gut microbiota dysbiosis, colonic inflammation, and proteome alterations[J]. Small, 2020, 16(36):e2001858
    Moon K S, Bae J M, Oh S. The diameter effect of TiO2 nanotube on inflammatory response in Raw 264.7 macrophages[J]. Korean Journal of Dental Materials, 2013, 40(1):25-32
    Tsugita M, Morimoto N, Nakayama M. SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses[J]. Particle and Fibre Toxicology, 2017, 14(1):11
    Gu W Q, Liu S, Chen L, et al. Single-cell RNA sequencing reveals size-dependent effects of polystyrene microplastics on immune and secretory cell populations from zebrafish intestines[J]. Environmental Science & Technology, 2020, 54(6):3417-3427
    Hwang J, Choi D, Han S, et al. An assessment of the toxicity of polypropylene microplastics in human derived cells[J]. The Science of the Total Environment, 2019, 684:657-669
    Yee M S L, Hii L W, Looi C K, et al. Impact of microplastics and nanoplastics on human health[J]. Nanomaterials, 2021, 11(2):496
    Varela J A, Bexiga M G, Åberg C, et al. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells[J]. Journal of Nanobiotechnology, 2012, 10:39
    Verreck F A W, de Boer T, Langenberg D M L, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(13):4560-4565
    Fillatreau S, Sweenie C H, McGeachy M J, et al. B cells regulate autoimmunity by provision of IL-10[J]. Nature Immunology, 2002, 3(10):944-950
    Grivennikov S I, Greten F R, Karin M. Immunity, inflammation, and cancer[J]. Cell, 2010, 140(6):883-899
    Dörpinghaus M, Brieger A, Panichkina O, et al. Lead ions abrogate lipopolysaccharide-induced nitric monoxide toxicity by reducing the expression of STAT1 and iNOS[J]. Journal of Trace Elements in Medicine and Biology, 2016, 37:117-124
    Zhou M X, Xu W M, Wang J Z, et al. Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury[J]. EBioMedicine, 2018, 35:345-360
    Xia T, Korge P, Weiss J N, et al. Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction:Implications for ultrafine particle toxicity[J]. Environmental Health Perspectives, 2004, 112(14):1347-1358
    Foster K A, Galeffi F, Gerich F J, et al. Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration[J]. Progress in Neurobiology, 2006, 79(3):136-171
    Bai Y J, Jiang Y Y, Liu T W, et al. Xinjiang herbal tea exerts immunomodulatory activity via TLR2/4-mediated MAPK signaling pathways in RAW264.7 cells and prevents cyclophosphamide-induced immunosuppression in mice[J]. Journal of Ethnopharmacology, 2019, 228:179-187
  • 20221005001-补充材料.docx
  • 加载中
计量
  • 文章访问数:  2012
  • HTML全文浏览数:  2012
  • PDF下载数:  188
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-10-05
王小霞, 官司敏, 杨贺然, 何欢, 任肖敏, 潘学军. 基于蛋白质组学研究微/纳塑料对巨噬细胞的潜在影响[J]. 生态毒理学报, 2023, 18(3): 347-356. doi: 10.7524/AJE.1673-5897.20221005001
引用本文: 王小霞, 官司敏, 杨贺然, 何欢, 任肖敏, 潘学军. 基于蛋白质组学研究微/纳塑料对巨噬细胞的潜在影响[J]. 生态毒理学报, 2023, 18(3): 347-356. doi: 10.7524/AJE.1673-5897.20221005001
Wang Xiaoxia, Guan Simin, Yang Heran, He Huan, Ren Xiaomin, Pan Xuejun. Potential Effects of Micro- and Nano-Plastics on Macrophages Based on Proteomics[J]. Asian journal of ecotoxicology, 2023, 18(3): 347-356. doi: 10.7524/AJE.1673-5897.20221005001
Citation: Wang Xiaoxia, Guan Simin, Yang Heran, He Huan, Ren Xiaomin, Pan Xuejun. Potential Effects of Micro- and Nano-Plastics on Macrophages Based on Proteomics[J]. Asian journal of ecotoxicology, 2023, 18(3): 347-356. doi: 10.7524/AJE.1673-5897.20221005001

基于蛋白质组学研究微/纳塑料对巨噬细胞的潜在影响

    通讯作者: 任肖敏, E-mail: 412656694@qq.com ;  潘学军, E-mail: xjpan@kust.edu.cn
    作者简介: 王小霞(1996—),女,博士研究生,研究方向为新污染物的健康风险评估,E-mail:xwangkust@163.com
  • 1. 昆明理工大学环境科学与工程学院, 昆明 650500;
  • 2. 云南省土壤固碳与污染防治重点实验室, 昆明 650500
基金项目:

国家自然科学基金面上项目(22276082);国家自然科学基金面上项目(22176076);云南省科技计划项目(202101BE070001-002);云南省基础研究计划-青年项目(202201AU070157)

摘要: 微塑料作为一种新型环境污染物,其对动物和人体的潜在健康风险受到了广泛的关注。本研究基于蛋白质组学分析研究了2种尺寸(3 μm和75 nm)聚苯乙烯微/纳塑料对小鼠巨噬细胞(RAW264.7)生物学功能的影响。研究结果表明3 μm聚苯乙烯微塑料(124)导致差异表达蛋白质的数量相比于75 nm聚苯乙烯纳塑料(152)更少。通过对差异表达蛋白质进行GO(gene ontology)功能注释分析,发现3 μm聚苯乙烯微塑料和75 nm聚苯乙烯纳塑料都可以对巨噬细胞的生物学过程、细胞组分和分子功能这三大生物学功能产生影响。进一步通过对差异表达蛋白质进行KEGG(kyoto encyclopedia of genes and genomes)信号通路富集分析,发现3 μm聚苯乙烯微塑料和75 nm聚苯乙烯纳塑料对巨噬细胞炎症反应及调节炎症反应相关的信号通路的影响非常显著。综合以上结果,本研究发现微/纳塑料对巨噬细胞的多个生物学功能具有潜在影响。推测巨噬细胞功能受损可能会影响其在免疫反应中的调节功能,进而导致机体炎症的发生和发展。本研究为微/纳塑料的人体健康潜在危害提供了科学依据和理论基础。

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回