四氯双酚A对斑马鱼幼鱼运动行为的影响及神经毒性机制研究
Effects of Tetrachlorobisphenol A (TCBPA) on Locomotion Behavior of Zebrafish Larvae and Its Neurotoxic Mechanism
-
摘要: 四氯双酚A(tetrachlorobisphenol A, TCBPA)作为四溴双酚A的替代品被广泛使用导致其在环境中被高频检出,但是目前其对于鱼类的毒性效应及机制还研究较少。本研究以斑马鱼胚胎为研究对象,将其暴露于不同浓度的TCBPA(0、2、20和200 μg·L-1)中120 h。通过测定斑马鱼幼鱼死亡率、孵化率、畸形率以及光暗刺激下的运动行为评估TCBPA对斑马鱼幼鱼发育的影响;通过检测幼鱼吖啶橙(AO)染色情况、氧化产物丙二醛(malonic dialdehyde, MDA)含量、抗氧化酶超氧化物歧化酶(superoxide dismutase, SOD)活力、神经递质多巴胺(dopamine, DA)含量以及DA合成关键基因的转录等方面阐明TCBPA对斑马鱼幼鱼的潜在毒性机制。结果发现,TCBPA在最高剂量组可以增加幼鱼畸形率、降低幼鱼游泳速度,并且伴随着头部发生细胞凋亡、体内DA含量降低。基因表达结果表明细胞凋亡相关基因p53和bax表达量升高而多巴胺合成相关基因(bdnf, th, dat, drd1和drd2)表达量降低。本研究表明TCBPA可能通过诱导细胞凋亡、降低DA含量以及影响相关基因的表达从而影响斑马鱼幼鱼的运动行为,相关结果可以为识别TCBPA的生态风险提供直接依据。Abstract: Tetrachlorobisphenol A (TCBPA) is widely used as an alternative to tetrabromobisphenol A and has been highly detected in the environment. However, its toxic effects and mechanisms are less studied in fish. In this study, using zebrafish as a study model, embryos were exposed to TCBPA at different concentrations (0, 2, 20 and 200 μg·L-1) for 120 hours post fertilization (hpf) and the developmental endpoints and locomotion behavior of larvae were measured. To explore the potential mechanisms of TCBPA, the acridine orange (OA) staining, the contents of malonic dialdehyde (MDA), superoxide dismutase (SOD), dopamine (DA) and expression of genes related to the cell apoptosis and dopamine signaling pathway were analysed. The results showed that TCBPA significantly decreased the swimming speed at the maximum exposure concentration, accompanied by a decrease in zebrafish larvae dopamine content and significant cell apoptosis in brain. Furthermore, the expression of genes related to cell apoptosis (p53 and bax) and dopamine signaling pathway (bdnf, th, dat, drd1 and drd2) were significantly changed. Our results demonstrate TCBPA exposure can induce cell apoptosis and decrease the DA content, and subsequently affect the locomotion behavior of zebrafish larvae. Our study can provide direct scientific evidence for identifying TCBPA risk assessment.
-
Key words:
- tetrachlorobisphenol A /
- zebrafish /
- locomotion behavior /
- dopamine /
- cell apoptosis
-
-
Huang Q, Liu W, Peng P A, et al. Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts[J]. Journal of Hazardous Materials, 2013, 262:634-641 杜琼霞. 典型双酚A类污染物对黑斑蛙蝌蚪发育及成蛙雄性生殖毒效应机理的研究[D]. 杭州:杭州师范大学, 2019:1-6Du Q X. Study of the development of Rana nigromaculata tadpoles and mechanism of reproductive toxicity of male Rana nigromaculata by bisphenol A pollutants[D]. Hangzhou:Hangzhou Normal University, 2019:1 -6(in Chinese)
刘舒巍. SBBR和人工湿地组合工艺的优化及对含TCBPA污水的处理研究[D]. 北京:北京化工大学, 2017:2-6Liu S W. Removal effect of tetrachlorobisphenol-A in a combined process of SBBR and CW[D]. Beijing:Beijing University of Chemical Technology, 2017:2 -6(in Chinese)
Song S J, Song M Y, Zeng L Z, et al. Occurrence and profiles of bisphenol analogues in municipal sewage sludge in China[J]. Environmental Pollution, 2014, 186:14-19 Yuan S Y, Chen S J, Chang B V. Anaerobic degradation of tetrachlorobisphenol-A in river sediment[J]. International Biodeterioration & Biodegradation, 2011, 65(1):185-190 Fan Z L, Hu J Y, An W, et al. Detection and occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China:Comparison to the parent compounds[J]. Environmental Science & Technology, 2013, 47(19):10841-10850 Kitamura S, Jinno N, Ohta S, et al. Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A[J]. Biochemical and Biophysical Research Communications, 2002, 293(1):554-559 周佳奇. 四溴双酚A和四氯双酚A对非洲爪蛙甲状腺激素信号及下丘脑-垂体-甲状腺轴的干扰作用[D]. 昆明:云南大学, 2018:12-16Zhou J Q. Disrupting effects of TBBPA and TCBPA on thyroid hormone signaling and hypothalamic-pituitary-thyroid axis in Xenopus laevis[D]. Kunming:Yunnan University, 2018:12 -16(in Chinese)
d'Amora M, Giordani S. The utility of zebrafish as a model for screening developmental neurotoxicity[J]. Frontiers in Neuroscience, 2018, 12:976 Song M Y, Liang D, Liang Y, et al. Assessing developmental toxicity and estrogenic activity of halogenated bisphenol A on zebrafish (Danio rerio)[J]. Chemosphere, 2014, 112:275-281 MacPhail R C, Brooks J, Hunter D L, et al. Locomotion in larval zebrafish:Influence of time of day, lighting and ethanol[J]. NeuroToxicology, 2009, 30(1):52-58 Sloman K A, McNeil P L. Using physiology and behaviour to understand the responses of fish early life stages to toxicants[J]. Journal of Fish Biology, 2012, 81(7):2175-2198 Drapeau P, Saint-Amant L, Buss R R, et al. Development of the locomotor network in zebrafish[J]. Progress in Neurobiology, 2002, 68(2):85-111 Rao J V, Begum G, Pallela R, et al. Changes in behavior and brain acetylcholinesterase activity in mosquito fish, Gambusia affinis in response to the sub-lethal exposure to chlorpyrifos[J]. International Journal of Environmental Research and Public Health, 2005, 2(3-4):478-483 Wu L Y, Dang Y, Liang L X, et al. Perfluorooctane sulfonates induces neurobehavioral changes and increases dopamine neurotransmitter levels in zebrafish larvae[J]. Chemosphere, 2022, 297:134234 Liu W T, Pan Y F, Yang L, et al. Developmental toxicity of TCBPA on the nervous and cardiovascular systems of zebrafish (Danio rerio):A combination of transcriptomic and metabolomics[J]. Journal of Environmental Sciences (China), 2023, 127:197-209 梁艺怀, 张京佶, 张琨, 等. 稀有鮈鲫作为鱼类幼体生长试验受试鱼种的适用性研究[J]. 中国实验动物学报, 2018, 26(5):618-623 Liang Y H, Zhang J J, Zhang K, et al. Applicability of Chinese rare minnows for the juvenile fish growth test[J]. Acta Laboratorium Animalis Scientia Sinica, 2018, 26(5):618-623(in Chinese)
Chen J F, Tanguay R L, Xiao Y Y, et al. TBBPA exposure during a sensitive developmental window produces neurobehavioral changes in larval zebrafish[J]. Environmental Pollution, 2016, 216:53-63 Ding Y L, Dong X, Feng W W, et al. Tetrabromobisphenol S alters the circadian rhythm network in the early life stages of zebrafish[J]. Science of the Total Environment, 2022, 806:150543 杨开智, 吴永贵, 王晓睿, 等. 不同类型植物凋落物参与下炼锌废渣对斑马鱼抗氧化酶和神经毒性的影响[J]. 环境科学学报, 2021, 41(6):2457-2465 Yang K Z, Wu Y G, Wang X R, et al. Effects of leachate from plant litters amended zinc smelting waste slag on antioxidant enzymatic activity and neurotoxicity in zebrafish (Danio rerio)[J]. Acta Scientiae Circumstantiae, 2021, 41(6):2457-2465(in Chinese)
Schattenberg J M, Galle P R, Schuchmann M. Apoptosis in liver disease[J]. Liver International:Official Journal of the International Association for the Study of the Liver, 2006, 26(8):904-911 Zeng C, Sun H, Xie P, et al. The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos[J]. Aquatic Toxicology, 2014, 149:25-32 Félix L M, Vidal A M, Serafim C, et al. Ketamine induction of p53-dependent apoptosis and oxidative stress in zebrafish (Danio rerio) embryos[J]. Chemosphere, 2018, 201:730-739 Selderslaghs I W T, Hooyberghs J, Blust R, et al. Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae[J]. Neurotoxicology and Teratology, 2013, 37:44-56 Yu Y J, Hou Y B, Dang Y, et al. Exposure of adult zebrafish (Danio rerio) to tetrabromobisphenol A causes neurotoxicity in larval offspring, an adverse transgenerational effect[J]. Journal of Hazardous Materials, 2021, 414:125408 Budni J, Bellettini-Santos T, Mina F, et al. The involvement of BDNF, NGF and GDNF in aging and Alzheimer's disease[J]. Aging and Disease, 2015, 6(5):331-341 Chen Y C, Sundvik M, Rozov S, et al. MANF regulates dopaminergic neuron development in larval zebrafish[J]. Developmental Biology, 2012, 370(2):237-249 -

计量
- 文章访问数: 2317
- HTML全文浏览数: 2317
- PDF下载数: 135
- 施引文献: 0