典型抗生素在城市污水处理厂各单元出水中的分布及受纳水体生态风险

牟霄, 张崇淼, 李永强, 刘瑶. 典型抗生素在城市污水处理厂各单元出水中的分布及受纳水体生态风险[J]. 生态毒理学报, 2023, 18(3): 366-375. doi: 10.7524/AJE.1673-5897.20230117002
引用本文: 牟霄, 张崇淼, 李永强, 刘瑶. 典型抗生素在城市污水处理厂各单元出水中的分布及受纳水体生态风险[J]. 生态毒理学报, 2023, 18(3): 366-375. doi: 10.7524/AJE.1673-5897.20230117002
Mou Xiao, Zhang Chongmiao, Li Yongqiang, Liu Yao. Distribution of Typical Antibiotics in Effluent from Different Units of Municipal Wastewater Treatment Plants and Ecological Risks in Receiving Waters[J]. Asian journal of ecotoxicology, 2023, 18(3): 366-375. doi: 10.7524/AJE.1673-5897.20230117002
Citation: Mou Xiao, Zhang Chongmiao, Li Yongqiang, Liu Yao. Distribution of Typical Antibiotics in Effluent from Different Units of Municipal Wastewater Treatment Plants and Ecological Risks in Receiving Waters[J]. Asian journal of ecotoxicology, 2023, 18(3): 366-375. doi: 10.7524/AJE.1673-5897.20230117002

典型抗生素在城市污水处理厂各单元出水中的分布及受纳水体生态风险

    作者简介: 牟霄(1987—),女,硕士,工程师,研究方向为污染物风险监测,E-mail:mouxiao0819@163.com
    通讯作者: 张崇淼, E-mail: cmzhang@xauat.edu.cn
  • 基金项目:

    陕西省重点研发计划项目(2020ZDLNY06-07,2022SF-244);陕西省食品药品检验研究院青苗基金项目(SQM202108)

  • 中图分类号: X171.5

Distribution of Typical Antibiotics in Effluent from Different Units of Municipal Wastewater Treatment Plants and Ecological Risks in Receiving Waters

    Corresponding author: Zhang Chongmiao, cmzhang@xauat.edu.cn
  • Fund Project:
  • 摘要: 为了探究城市污水排放抗生素造成的生态风险,选择西安市的2座污水处理厂为研究对象,利用固相萃取-超高效液相色谱-串联质谱(SPE-UPLC-MS/MS)对9种主要抗生素(包括3种磺胺类、3种四环素类和3种喹诺酮类)进行定量检测,分析不同处理阶段对抗生素去除的贡献率,研究水质指标和抗生素浓度之间的关系,并运用风险商值法评估受纳水体抗生素的生态风险。结果表明,共有5种抗生素(诺氟沙星、环丙沙星、恩诺沙星、磺胺甲恶唑、磺胺嘧啶)在这些污水厂中被检出,浓度范围为25.0~349.7 ng·L-1,其中诺氟沙星、环丙沙星和磺胺甲恶唑是城市污水厂进水中最主要的抗生素,其浓度都在100 ng·L-1以上;二级生物处理单元对诺氟沙星和环丙沙星有良好的去除效果,且AAO工艺对诺氟沙星和环丙沙星的去除率要优于氧化沟工艺,而氯消毒则对磺胺甲恶唑有较高的去除率。厌氧处理段会使水中磺胺类抗生素浓度升高。污水中的氨氮和COD与检出的抗生素浓度之间存在显著相关性。受纳水体中诺氟沙星、恩诺沙星、磺胺甲恶唑造成的生态风险均在中风险水平(0.1≤RQ<1),环丙沙星则为高风险(RQ=3.10>1)。
  • 加载中
  • Demain A L, Sanchez S. Microbial drug discovery:80 years of progress[J]. The Journal of Antibiotics, 2009, 62(1):5-16
    Ben Y J, Fu C X, Hu M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment:A review[J]. Environmental Research, 2019, 169:483-493
    Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9):3435-3440
    Rodriguez-Mozaz S, Chamorro S, Marti E, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river[J]. Water Research, 2015, 69:234-242
    Qin Y H, Ma S T. Recent advances in the development of macrolide antibiotics as antimicrobial agents[J]. Mini Reviews in Medicinal Chemistry, 2020, 20(7):601-625
    Zhou X Q, Cuasquer G J P, Li Z F, et al. Occurrence of typical antibiotics, representative antibiotic-resistant bacteria, and genes in fresh and stored source-separated human urine[J]. Environment International, 2021, 146:106280
    Monahan C, Harris S, Morris D, et al. A comparative risk ranking of antibiotic pollution from human and veterinary antibiotic usage-An Irish case study[J]. The Science of the Total Environment, 2022, 826:154008
    Tran N H, Hoang L, Nghiem L D, et al. Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi, Vietnam[J]. The Science of the Total Environment, 2019, 692:157-174
    Osińska A, Korzeniewska E, Harnisz M, et al. Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment[J]. Journal of Hazardous Materials, 2020, 381:121221
    Renau-Pruñonosa A, García-Menéndez O, Ibáñez M, et al. Identification of aquifer recharge sources as the origin of emerging contaminants in intensive agricultural areas. La Plana de castellón, Spain[J]. Water, 2020, 12(3):731
    de Santiago-Martín A, Meffe R, Teijón G, et al. Pharmaceuticals and trace metals in the surface water used for crop irrigation:Risk to health or natural attenuation?[J]. Science of the Total Environment, 2020, 705:135825
    Fan J J, Wang S, Tang J P, et al. Bioaccumulation of endocrine disrupting compounds in fish with different feeding habits along the largest subtropical river, China[J]. Environmental Pollution, 2019, 247:999-1008
    Grandclément C, Seyssiecq I, Piram A, et al. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal:A review[J]. Water Research, 2017, 111:297-317
    Tran N H, Chen H J, Reinhard M, et al. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes[J]. Water Research, 2016, 104:461-472
    崔迪, 邓红娜, 庞长泷, 等. 生物法去除水环境中磺胺甲恶唑的研究进展[J]. 中国给水排水, 2019, 35(24):32-38

    Cui D, Deng H N, Pang C L, et al. Progress in the study of the removal of sulfamethoxazole by biological methods in water environment[J]. China Water & Wastewater, 2019, 35(24):32-38(in Chinese)

    Ramírez-Morales D, Masís-Mora M, Montiel-Mora J R, et al. Occurrence of pharmaceuticals, hazard assessment and ecotoxicological evaluation of wastewater treatment plants in Costa Rica[J]. The Science of the Total Environment, 2020, 746:141200
    Russell J N, Yost C K. Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems[J]. Chemosphere, 2021, 263:128177
    Fu J M, Zhao Y Q, Yao Q, et al. A review on antibiotics removal:Leveraging the combination of grey and green techniques[J]. The Science of the Total Environment, 2022, 838(Pt 3):156427
    Segura P A, François M, Gagnon C, et al. Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters[J]. Environmental Health Perspectives, 2009, 117(5):675-684
    Zhou J, Yun X, Wang J T, et al. A review on the ecotoxicological effect of sulphonamides on aquatic organisms[J]. Toxicology Reports, 2022, 9:534-540
    Kovalakova P, Cizmas L, McDonald T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment:A review[J]. Chemosphere, 2020, 251:126351
    Duan W Y, Cui H W, Jia X Y, et al. Occurrence and ecotoxicity of sulfonamides in the aquatic environment:A review[J]. The Science of the Total Environment, 2022, 820:153178
    王慧, 王晨, 田业超, 等. 城市污水处理厂及其受纳水体中典型PPCPs的分布特征及其生态风险评价[J]. 环境科学学报, 2023, 43(4):339-349

    Wang H, Wang C, Tian Y C, et al. Distribution characters and ecological risk assessment of typical PPCPs in sewage treatment plant and its receiving water[J]. Acta Scientiae Circumstantiae, 2023, 43(4):339-349(in Chinese)

    姚丽君, 莫凌, 庄僖, 等. 海南省典型饮用水源地水体与沉积物中抗生素的残留及风险评价[J]. 生态毒理学报, 2022, 17(5):349-361

    Yao L J, Mo L, Zhuang X, et al. Residual and risk assessment of antibiotics in water and sediments of typical drinking water sources in Hainan Province[J]. Asian Journal of Ecotoxicology, 2022, 17(5):349-361(in Chinese)

    中华人民共和国国务院办公厅. 新污染物治理行动方案[R]. 北京:国务院办公厅, 2022
    Zhang C M, Liang J, Liu W Y. Comparative study on the bacterial diversity and antibiotic resistance genes of urban landscape waters replenished by reclaimed water and surface water in Xi'an, China[J]. Environmental Science and Pollution Research International, 2021, 28(30):41396-41406
    Li Y Q, Zhang C M, Mou X, et al. Distribution characteristics of antibiotic resistance bacteria and related genes in urban recreational lakes replenished by different supplementary water source[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2022, 85(4):1176-1190
    李彦文, 莫测辉, 赵娜, 等. 菜地土壤中磺胺类和四环素类抗生素污染特征研究[J]. 环境科学, 2009, 30(6):1762-1766

    Li Y W, Mo C H, Zhao N, et al. Investigation of sulfonamides and tetracyclines antibiotics in soils from various vegetable fields[J]. Environmental Science, 2009, 30(6):1762-1766(in Chinese)

    Azanu D, Styrishave B, Darko G, et al. Occurrence and risk assessment of antibiotics in water and lettuce in Ghana[J]. Science of the Total Environment, 2018, 622-623:293-305
    Zhang R J, Tang J H, Li J, et al. Occurrence and risks of antibiotics in the coastal aquatic environment of the Yellow Sea, North China[J]. The Science of the Total Environment, 2013, 450-451:197-204
    Zou M Y, Tian W J, Zhao J, et al. Quinolone antibiotics in sewage treatment plants with activated sludge treatment processes:A review on source, concentration and removal[J]. Process Safety and Environmental Protection, 2022, 160:116-129
    Chen H Y, Jing L J, Teng Y G, et al. Characterization of antibiotics in a large-scale river system of China:Occurrence pattern, spatiotemporal distribution and environmental risks[J]. Science of the Total Environment, 2018, 618:409-418
    Hernando M D, Mezcua M, Fernández-Alba A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2):334-342
    李佳乐, 王萌, 胡发旺, 等. 江西锦江流域抗生素污染特征与生态风险评价[J]. 环境科学, 2022, 43(8):4064-4073

    Li J L, Wang M, Hu F W, et al. Antibiotic pollution characteristics and ecological risk assessment in Jinjiang River Basin, Jiangxi Province[J]. Environmental Science, 2022, 43(8):4064-4073(in Chinese)

    吴天宇, 李江, 杨爱江, 等. 赤水河流域水体抗生素污染特征及风险评价[J]. 环境科学, 2022, 43(1):210-219

    Wu T Y, Li J, Yang A J, et al. Characteristics and risk assessment of antibiotic contamination in Chishui River Basin, Guizhou Province, China[J]. Environmental Science, 2022, 43(1):210-219(in Chinese)

    王依琳, 张蕊, 张强英, 等. 污水中抗生素的分布、来源及去除研究进展[J]. 再生资源与循环经济, 2022, 15(3):36-41

    Wang Y L, Zhang R, Zhang Q Y, et al. Research progress on the occurrence and removal of antibiotics in sewage[J]. Recyclable Resources and Circular Economy, 2022, 15(3):36-41(in Chinese)

    耿冲冲, 王亚军. 污水中抗生素生化去除研究进展[J]. 环境监测管理与技术, 2019, 31(3):12-16

    , 56Geng C C, Wang Y J. Research progress of biochemical treatment on antibiotics removal from wastewater[J]. The Administration and Technique of Environmental Monitoring, 2019, 31(3):12-16, 56(in Chinese)

    Michael I, Rizzo L, McArdell C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment:A review[J]. Water Research, 2013, 47(3):957-995
    Oberoi A S, Jia Y Y, Zhang H Q, et al. Insights into the fate and removal of antibiotics in engineered biological treatment systems:A critical review[J]. Environmental Science & Technology, 2019, 53(13):7234-7264
    Joss A, Zabczynski S, Göbel A, et al. Biological degradation of pharmaceuticals in municipal wastewater treatment:Proposing a classification scheme[J]. Water Research, 2006, 40(8):1686-1696
    Rosal R, Rodríguez A, Perdigón-Melón J A, et al. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation[J]. Water Research, 2010, 44(2):578-588
    丁朋飞, 陆金鑫, 汤慧俐, 等. 次氯酸钠消毒中磺胺二甲氧嗪的降解与风险评价[J]. 土木与环境工程学报(中英文), 2023, 45:1-10Ding P F, Lu J X, Tang H L, et al. Degradation and risk assessment of sulfadimethoxine during sodium hypochlorite disinfection process[J]. Journal of Civil and Environmental Engineering, 2023, 45:1-10(in Chinese)
    杨帅, 余晓敏, 郭学博, 等. 二氧化氯对典型磺胺类抗生素的降解机制[J]. 环境化学, 2019, 38(1):34-41

    Yang S, Yu X M, Guo X B, et al. Degradation mechanisms of sulfonamides by chlorine dioxide[J]. Environmental Chemistry, 2019, 38(1):34-41(in Chinese)

    Yang Y J, Shi J C, Yang Y, et al. Transformation of sulfamethazine during the chlorination disinfection process:Transformation, kinetics, and toxicology assessment[J]. Journal of Environmental Sciences, 2019, 76:48-56
    Wang M, Helbling D E. A non-target approach to identify disinfection byproducts of structurally similar sulfonamide antibiotics[J]. Water Research, 2016, 102:241-251
    邵天华, 贲伟伟, 苏都, 等. 城市污水处理厂污水及污泥中典型药物及其代谢产物的定量检测[J]. 环境科学学报, 2020, 40(6):2136-2141

    Shao T H, Ben W W, Su D, et al. Quantitative determination of typical pharmaceuticals and their metabolites in municipal wastewater treatment plants[J]. Acta Scientiae Circumstantiae, 2020, 40(6):2136-2141(in Chinese)

    Göbel A, McArdell C S, Joss A, et al. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies[J]. The Science of the Total Environment, 2007, 372(2-3):361-371
    Zonja B, Pérez S, Barceló D. Human metabolite lamotrigine-N(2)-glucuronide is the principal source of lamotrigine-derived compounds in wastewater treatment plants and surface water[J]. Environmental Science & Technology, 2016, 50(1):154-164
    Wang J, Gardinali P R. Identification of phase Ⅱ pharmaceutical metabolites in reclaimed water using high resolution benchtop Orbitrap mass spectrometry[J]. Chemosphere, 2014, 107:65-73
    温明铎, 陈文兵, 高自豪, 等. 污水处理厂新兴污染物赋存及末端控制技术进展[J]. 净水技术, 2022, 41(5):14-22

    Wen M D, Chen W B, Gao Z H, et al. Technological progress in occurrence and end control of emerging contaminants in WWTP[J]. Water Purification Technology, 2022, 41(5):14-22(in Chinese)

    杨尚乐, 王旭明, 王伟华, 等. 松花江哈尔滨段及阿什河抗生素的分布规律与生态风险评估[J]. 环境科学, 2021, 42(1):136-146

    Yang S L, Wang X M, Wang W H, et al. Distribution and ecological risk assessment of antibiotics in the Songhua River Basin of the Harbin section and Ashe River[J]. Environmental Science, 2021, 42(1):136-146(in Chinese)

    王嘉玮, 魏红, 杨小雨, 等. 渭河西安段磺胺类抗生素的分布特征及生态风险评价[J]. 环境化学, 2017, 36(12):2574-2583

    Wang J W, Wei H, Yang X Y, et al. Occurrence and ecological risk of sulfonamide antibiotics in the surface water of the Weihe Xi'an section[J]. Environmental Chemistry, 2017, 36(12):2574-2583(in Chinese)

    Bao Y Y, Li F F, Chen L J, et al. Fate of antibiotics in engineered wastewater systems and receiving water environment:A case study on the coast of Hangzhou Bay, China[J]. The Science of the Total Environment, 2021, 769:144642
    Fan N S, Fu J J, Huang D Q, et al. Resistance genes and extracellular proteins relieve antibiotic stress on the anammox process[J]. Water Research, 2021, 202:117453
    Dorival-García N, Zafra-Gómez A, Navalón A, et al. Removal and degradation characteristics of quinolone antibiotics in laboratory-scale activated sludge reactors under aerobic, nitrifying and anoxic conditions[J]. Journal of Environmental Management, 2013, 120:75-83
    张晓娇, 柏杨巍, 张远, 等. 辽河流域地表水中典型抗生素污染特征及生态风险评估[J]. 环境科学, 2017, 38(11):4553-4561

    Zhang X J, Bai Y W, Zhang Y, et al. Occurrence, distribution, and ecological risk of antibiotics in surface water in the Liaohe River Basin, China[J]. Environmental Science, 2017, 38(11):4553-4561(in Chinese)

    魏红, 王嘉玮, 杨小雨, 等. 渭河关中段表层水中抗生素污染特征与风险[J]. 中国环境科学, 2017, 37(6):2255-2262

    Wei H, Wang J W, Yang X Y, et al. Contamination characteristic and ecological risk of antibiotics in surface water of the Weihe Guanzhong section[J]. China Environmental Science, 2017, 37(6):2255-2262(in Chinese)

    杨大杰, 欧阳友, 李炳华, 等. 我国水环境中喹诺酮类抗生素赋存特征及生态风险评估[J]. 人民黄河, 2022, 44(8):97-102

    , 108Yang D J, Ouyang Y, Li B H, et al. Occurrence characteristics and ecological risk assessment of quinolone antibiotics in Chinese aquatic environment[J]. Yellow River, 2022, 44(8):97-102, 108(in Chinese)

  • 加载中
计量
  • 文章访问数:  4004
  • HTML全文浏览数:  4004
  • PDF下载数:  211
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-01-17
牟霄, 张崇淼, 李永强, 刘瑶. 典型抗生素在城市污水处理厂各单元出水中的分布及受纳水体生态风险[J]. 生态毒理学报, 2023, 18(3): 366-375. doi: 10.7524/AJE.1673-5897.20230117002
引用本文: 牟霄, 张崇淼, 李永强, 刘瑶. 典型抗生素在城市污水处理厂各单元出水中的分布及受纳水体生态风险[J]. 生态毒理学报, 2023, 18(3): 366-375. doi: 10.7524/AJE.1673-5897.20230117002
Mou Xiao, Zhang Chongmiao, Li Yongqiang, Liu Yao. Distribution of Typical Antibiotics in Effluent from Different Units of Municipal Wastewater Treatment Plants and Ecological Risks in Receiving Waters[J]. Asian journal of ecotoxicology, 2023, 18(3): 366-375. doi: 10.7524/AJE.1673-5897.20230117002
Citation: Mou Xiao, Zhang Chongmiao, Li Yongqiang, Liu Yao. Distribution of Typical Antibiotics in Effluent from Different Units of Municipal Wastewater Treatment Plants and Ecological Risks in Receiving Waters[J]. Asian journal of ecotoxicology, 2023, 18(3): 366-375. doi: 10.7524/AJE.1673-5897.20230117002

典型抗生素在城市污水处理厂各单元出水中的分布及受纳水体生态风险

    通讯作者: 张崇淼, E-mail: cmzhang@xauat.edu.cn
    作者简介: 牟霄(1987—),女,硕士,工程师,研究方向为污染物风险监测,E-mail:mouxiao0819@163.com
  • 1. 陕西省食品药品检验研究院, 西安 710065;
  • 2. 西安建筑科技大学环境与市政工程学院, 西安 710055;
  • 3. 西安建筑科技大学, 西北水资源与环境生态教育部重点实验室, 陕西省环境工程重点实验室, 西安 710055
基金项目:

陕西省重点研发计划项目(2020ZDLNY06-07,2022SF-244);陕西省食品药品检验研究院青苗基金项目(SQM202108)

摘要: 为了探究城市污水排放抗生素造成的生态风险,选择西安市的2座污水处理厂为研究对象,利用固相萃取-超高效液相色谱-串联质谱(SPE-UPLC-MS/MS)对9种主要抗生素(包括3种磺胺类、3种四环素类和3种喹诺酮类)进行定量检测,分析不同处理阶段对抗生素去除的贡献率,研究水质指标和抗生素浓度之间的关系,并运用风险商值法评估受纳水体抗生素的生态风险。结果表明,共有5种抗生素(诺氟沙星、环丙沙星、恩诺沙星、磺胺甲恶唑、磺胺嘧啶)在这些污水厂中被检出,浓度范围为25.0~349.7 ng·L-1,其中诺氟沙星、环丙沙星和磺胺甲恶唑是城市污水厂进水中最主要的抗生素,其浓度都在100 ng·L-1以上;二级生物处理单元对诺氟沙星和环丙沙星有良好的去除效果,且AAO工艺对诺氟沙星和环丙沙星的去除率要优于氧化沟工艺,而氯消毒则对磺胺甲恶唑有较高的去除率。厌氧处理段会使水中磺胺类抗生素浓度升高。污水中的氨氮和COD与检出的抗生素浓度之间存在显著相关性。受纳水体中诺氟沙星、恩诺沙星、磺胺甲恶唑造成的生态风险均在中风险水平(0.1≤RQ<1),环丙沙星则为高风险(RQ=3.10>1)。

English Abstract

参考文献 (58)

返回顶部

目录

/

返回文章
返回