Huang Q, Liu W, Peng P A, et al. Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts[J]. Journal of Hazardous Materials, 2013, 262:634-641
杜琼霞. 典型双酚A类污染物对黑斑蛙蝌蚪发育及成蛙雄性生殖毒效应机理的研究[D]. 杭州:杭州师范大学, 2019:1-6Du Q X. Study of the development of Rana nigromaculata tadpoles and mechanism of reproductive toxicity of male Rana nigromaculata by bisphenol A pollutants[D]. Hangzhou:Hangzhou Normal University, 2019:1 -6(in Chinese)
刘舒巍. SBBR和人工湿地组合工艺的优化及对含TCBPA污水的处理研究[D]. 北京:北京化工大学, 2017:2-6Liu S W. Removal effect of tetrachlorobisphenol-A in a combined process of SBBR and CW[D]. Beijing:Beijing University of Chemical Technology, 2017:2 -6(in Chinese)
Song S J, Song M Y, Zeng L Z, et al. Occurrence and profiles of bisphenol analogues in municipal sewage sludge in China[J]. Environmental Pollution, 2014, 186:14-19
Yuan S Y, Chen S J, Chang B V. Anaerobic degradation of tetrachlorobisphenol-A in river sediment[J]. International Biodeterioration & Biodegradation, 2011, 65(1):185-190
Fan Z L, Hu J Y, An W, et al. Detection and occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China:Comparison to the parent compounds[J]. Environmental Science & Technology, 2013, 47(19):10841-10850
Kitamura S, Jinno N, Ohta S, et al. Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A[J]. Biochemical and Biophysical Research Communications, 2002, 293(1):554-559
周佳奇. 四溴双酚A和四氯双酚A对非洲爪蛙甲状腺激素信号及下丘脑-垂体-甲状腺轴的干扰作用[D]. 昆明:云南大学, 2018:12-16Zhou J Q. Disrupting effects of TBBPA and TCBPA on thyroid hormone signaling and hypothalamic-pituitary-thyroid axis in Xenopus laevis[D]. Kunming:Yunnan University, 2018:12 -16(in Chinese)
d'Amora M, Giordani S. The utility of zebrafish as a model for screening developmental neurotoxicity[J]. Frontiers in Neuroscience, 2018, 12:976
Song M Y, Liang D, Liang Y, et al. Assessing developmental toxicity and estrogenic activity of halogenated bisphenol A on zebrafish (Danio rerio)[J]. Chemosphere, 2014, 112:275-281
MacPhail R C, Brooks J, Hunter D L, et al. Locomotion in larval zebrafish:Influence of time of day, lighting and ethanol[J]. NeuroToxicology, 2009, 30(1):52-58
Sloman K A, McNeil P L. Using physiology and behaviour to understand the responses of fish early life stages to toxicants[J]. Journal of Fish Biology, 2012, 81(7):2175-2198
Drapeau P, Saint-Amant L, Buss R R, et al. Development of the locomotor network in zebrafish[J]. Progress in Neurobiology, 2002, 68(2):85-111
Rao J V, Begum G, Pallela R, et al. Changes in behavior and brain acetylcholinesterase activity in mosquito fish, Gambusia affinis in response to the sub-lethal exposure to chlorpyrifos[J]. International Journal of Environmental Research and Public Health, 2005, 2(3-4):478-483
Wu L Y, Dang Y, Liang L X, et al. Perfluorooctane sulfonates induces neurobehavioral changes and increases dopamine neurotransmitter levels in zebrafish larvae[J]. Chemosphere, 2022, 297:134234
Liu W T, Pan Y F, Yang L, et al. Developmental toxicity of TCBPA on the nervous and cardiovascular systems of zebrafish (Danio rerio):A combination of transcriptomic and metabolomics[J]. Journal of Environmental Sciences (China), 2023, 127:197-209
梁艺怀, 张京佶, 张琨, 等. 稀有鮈鲫作为鱼类幼体生长试验受试鱼种的适用性研究[J]. 中国实验动物学报, 2018, 26(5):618-623 Liang Y H, Zhang J J, Zhang K, et al. Applicability of Chinese rare minnows for the juvenile fish growth test[J]. Acta Laboratorium Animalis Scientia Sinica, 2018, 26(5):618-623(in Chinese)
Chen J F, Tanguay R L, Xiao Y Y, et al. TBBPA exposure during a sensitive developmental window produces neurobehavioral changes in larval zebrafish[J]. Environmental Pollution, 2016, 216:53-63
Ding Y L, Dong X, Feng W W, et al. Tetrabromobisphenol S alters the circadian rhythm network in the early life stages of zebrafish[J]. Science of the Total Environment, 2022, 806:150543
杨开智, 吴永贵, 王晓睿, 等. 不同类型植物凋落物参与下炼锌废渣对斑马鱼抗氧化酶和神经毒性的影响[J]. 环境科学学报, 2021, 41(6):2457-2465 Yang K Z, Wu Y G, Wang X R, et al. Effects of leachate from plant litters amended zinc smelting waste slag on antioxidant enzymatic activity and neurotoxicity in zebrafish (Danio rerio)[J]. Acta Scientiae Circumstantiae, 2021, 41(6):2457-2465(in Chinese)
Schattenberg J M, Galle P R, Schuchmann M. Apoptosis in liver disease[J]. Liver International:Official Journal of the International Association for the Study of the Liver, 2006, 26(8):904-911
Zeng C, Sun H, Xie P, et al. The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos[J]. Aquatic Toxicology, 2014, 149:25-32
Félix L M, Vidal A M, Serafim C, et al. Ketamine induction of p53-dependent apoptosis and oxidative stress in zebrafish (Danio rerio) embryos[J]. Chemosphere, 2018, 201:730-739
Selderslaghs I W T, Hooyberghs J, Blust R, et al. Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae[J]. Neurotoxicology and Teratology, 2013, 37:44-56
Yu Y J, Hou Y B, Dang Y, et al. Exposure of adult zebrafish (Danio rerio) to tetrabromobisphenol A causes neurotoxicity in larval offspring, an adverse transgenerational effect[J]. Journal of Hazardous Materials, 2021, 414:125408
Budni J, Bellettini-Santos T, Mina F, et al. The involvement of BDNF, NGF and GDNF in aging and Alzheimer's disease[J]. Aging and Disease, 2015, 6(5):331-341
Chen Y C, Sundvik M, Rozov S, et al. MANF regulates dopaminergic neuron development in larval zebrafish[J]. Developmental Biology, 2012, 370(2):237-249