Janković N Z, Plata D L. Engineered nanomaterials in the context of global element cycles[J]. Environmental Science:Nano, 2019, 6(9):2697-2711
Aitken R J, Chaudhry M Q, Boxall A B, et al. Manufacture and use of nanomaterials:Current status in the UK and global trends[J]. Occupational Medicine, 2006, 56(5):300-306
Li W Y, Xu L N, Chen J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors[J]. Advanced Functional Materials, 2005, 15(5):851-857
Li Y G, Tan B, Wu Y Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability[J]. Nano Letters, 2008, 8(1):265-270
Hoseinzadeh E, Makhdoumi P, Taha P, et al. A review on nano-antimicrobials:Metal nanoparticles, methods and mechanisms[J]. Current Drug Metabolism, 2017, 18(2):120-128
Tonelli A M, Venturini J, Arcaro S, et al. Novel core-shell nanocomposites based on TiO2-covered magnetic Co3O4 for biomedical applications[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2020, 108(5):1879-1887
Pankhurst Q A, Thanh N K T, Jones S K, et al. Progress in applications of magnetic nanoparticles in biomedicine[J]. Journal of Physics D:Applied Physics, 2009, 42(22):224001
Zhao F, Zhao Y, Liu Y, et al. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials[J]. Small, 2011, 7(10):1322-1337
Sengul A B, Asmatulu E. Toxicity of metal and metal oxide nanoparticles:A review[J]. Environmental Chemistry Letters, 2020, 18(5):1659-1683
Liu N, Tang M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles[J]. Journal of Applied Toxicology, 2020, 40(1):16-36
McShan D, Ray P C, Yu H T. Molecular toxicity mechanism of nanosilver[J]. Journal of Food and Drug Analysis, 2014, 22(1):116-127
Wong B S E, Hu Q D, Baeg G H. Epigenetic modulations in nanoparticle-mediated toxicity[J]. Food and Chemical Toxicology, 2017, 109:746-752
Stoccoro A, Karlsson H L, Coppedè F, et al. Epigenetic effects of nano-sized materials[J]. Toxicology, 2013, 313(1):3-14
Shyamasundar S, Ng C T, Yung L Y, et al. Epigenetic mechanisms in nanomaterial-induced toxicity[J]. Epigenomics, 2015, 7(3):395-411
Berger S L. The complex language of chromatin regulation during transcription[J]. Nature, 2007, 447(7143):407-412
Kouzarides T. Chromatin modifications and their function[J]. Cell, 2007, 128(4):693-705
Price B D, D'Andrea A D. Chromatin remodeling at DNA double-strand breaks[J]. Cell, 2013, 152(6):1344-1354
Wang S Y, Meyer D H, Schumacher B. H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage[J]. Nature Structural & Molecular Biology, 2020, 27(12):1165-1177
Lawrence M, Daujat S, Schneider R. Lateral thinking:How histone modifications regulate gene expression[J]. Trends in Genetics, 2016, 32(1):42-56
Zhao X X, Ibuki Y. Evaluating the toxicity of silver nanoparticles by detecting phosphorylation of histone H3 in combination with flow cytometry side-scattered light[J]. Environmental Science & Technology, 2015, 49(8):5003-5012
Zhao X X, Toyooka T, Ibuki Y. Silver nanoparticle-induced phosphorylation of histone H3 at serine 10 is due to dynamic changes in actin filaments and the activation of Aurora kinases[J]. Toxicology Letters, 2017, 276:39-47
Liu Y, Mayo M W, Nagji A S, et al. BRMS1 suppresses lung cancer metastases through an E3 ligase function on histone acetyltransferase p300[J]. Cancer Research, 2013, 73(4):1308-1317
Jin K L, Pak J H, Park J Y, et al. Expression profile of histone deacetylases 1, 2 and 3 in ovarian cancer tissues[J]. Journal of Gynecologic Oncology, 2008, 19(3):185-190
Kumar A, Kumari N, Nallabelli N, et al. Expression profile of H3K4 demethylases with their clinical and pathological correlation in patients with clear cell renal cell carcinoma[J]. Gene, 2020, 739:144498
de la Cruz X, Lois S, Sánchez-Molina S, et al. Do protein motifs read the histone code?[J]. BioEssays, 2005, 27(2):164-175
Oh N, Park J H. Endocytosis and exocytosis of nanoparticles in mammalian cells[J]. International Journal of Nanomedicine, 2014, 9(Suppl.1):51-63
Liu W, Wu Y, Wang C, et al. Impact of silver nanoparticles on human cells:Effect of particle size[J]. Nanotoxicology, 2010, 4(3):319-330
Donaldson K, Aitken R, Tran L, et al. Carbon nanotubes:A review of their properties in relation to pulmonary toxicology and workplace safety[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2006, 92(1):5-22
Abudayyak M, Gurkaynak T A, Özhan G. In vitro toxicological assessment of cobalt ferrite nanoparticles in several mammalian cell types[J]. Biological Trace Element Research, 2017, 175(2):458-465
Abudayyak M, Gurkaynak T A, Özhan G. In vitro evaluation of cobalt oxide nanoparticle-induced toxicity[J]. Toxicology and Industrial Health, 2017, 33(8):646-654
Rossetto D, Avvakumov N, Côté J. Histone phosphorylation:A chromatin modification involved in diverse nuclear events[J]. Epigenetics, 2012, 7(10):1098-1108
Li J, Gorospe M, Barnes J, et al. Tumor promoter arsenite stimulates histone H3 phosphoacetylation of proto-oncogenes c-fos and c-Jun chromatin in human diploid fibroblasts[J]. The Journal of Biological Chemistry, 2003, 278(15):13183-13191
Ke Q D, Li Q, Ellen T P, et al. Nickel compounds induce phosphorylation of histone H3 at serine 10 by activating JNK-MAPK pathway[J]. Carcinogenesis, 2008, 29(6):1276-1281
Lo W S, Trievel R C, Rojas J R, et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14[J]. Molecular Cell, 2000, 5(6):917-926
Salvador L M, Park Y, Cottom J, et al. Follicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells[J]. The Journal of Biological Chemistry, 2001, 276(43):40146-40155
Karmodiya K, Krebs A R, Oulad-Abdelghani M, et al. H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells[J]. BMC Genomics, 2012, 13:424
Zhang T Y, Cooper S, Brockdorff N. The interplay of histone modifications-writers that read[J]. EMBO Reports, 2015, 16(11):1467-1481
Ayrapetov M K, Gursoy-Yuzugullu O, Xu C, et al. DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25):9169-9174
van Attikum H, Gasser S M. Crosstalk between histone modifications during the DNA damage response[J]. Trends in Cell Biology, 2009, 19(5):207-217