小鼠体内砷甜菜碱向无机砷的生物降解

赵芊瑜, 熊海燕, 叶紫君, 黄莉萍, 张伟. 小鼠体内砷甜菜碱向无机砷的生物降解[J]. 生态毒理学报, 2023, 18(3): 326-335. doi: 10.7524/AJE.1673-5897.20221226001
引用本文: 赵芊瑜, 熊海燕, 叶紫君, 黄莉萍, 张伟. 小鼠体内砷甜菜碱向无机砷的生物降解[J]. 生态毒理学报, 2023, 18(3): 326-335. doi: 10.7524/AJE.1673-5897.20221226001
Zhao Qianyu, Xiong Haiyan, Ye Zijun, Huang Liping, Zhang Wei. Biodegradation of Arsenobetaine into Inorganic Arsenic in Mice[J]. Asian journal of ecotoxicology, 2023, 18(3): 326-335. doi: 10.7524/AJE.1673-5897.20221226001
Citation: Zhao Qianyu, Xiong Haiyan, Ye Zijun, Huang Liping, Zhang Wei. Biodegradation of Arsenobetaine into Inorganic Arsenic in Mice[J]. Asian journal of ecotoxicology, 2023, 18(3): 326-335. doi: 10.7524/AJE.1673-5897.20221226001

小鼠体内砷甜菜碱向无机砷的生物降解

    作者简介: 赵芊瑜(1999—),女,硕士生,研究方向为生态毒理学,E-mail:qianyu_zhao_1230@163.com
    通讯作者: 张伟, E-mail: zh_wei@gzhu.edu.cn
  • 基金项目:

    广东省基础与应用基础研究基金自然科学基金杰出青年项目(2022B1515020030);广州大学百人计划引进人才科研启动项目(RQ2020057)

  • 中图分类号: X171.5

Biodegradation of Arsenobetaine into Inorganic Arsenic in Mice

    Corresponding author: Zhang Wei, zh_wei@gzhu.edu.cn
  • Fund Project:
  • 摘要: 砷在高浓度下对生物体具有极高的毒性,然而,关于低毒性的砷甜菜碱(AsB)在哺乳动物体内生物转化的研究有限。AsB对人体是否造成潜在健康影响,最近引起了广泛的关注。因此,本研究评估了AsB和无机砷形态在小鼠体内的差异吸收、生物转化和生物积累。为此,C57BL/6J小鼠以1 000 μg·kg-1剂量口服AsB和无机砷(iAs) 14 d。随后,收集组织/器官样本以及尿液和粪便样本进行分析。结果表明,AsB的口服吸收率最高。此外,我们观察到AsB经口服后向砷酸盐(As(Ⅴ))发生显著生物转化,相较于亚砷酸盐(As(Ⅲ))或As(Ⅴ)处理的小鼠,AsB处理小鼠的肝脏、肺和脾脏中砷积累水平更高。在短期接触AsB后,iAs在肺和脾脏中表现出较高的积累水平。总的来说,这些发现提供了强有力的证据,证明在哺乳动物中,AsB经历了向iAs的生物转化,同时表明哺乳动物长期摄入AsB存在潜在的健康风险。
  • 加载中
  • International Agency for Research on Cancer (IARC). List of Classifications-Agents classified by the IARC Monographs[M]. Lyon:IARC, 2020:1-127
    Moe B, Peng H Y, Lu X F, et al. Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing[J]. Journal of Environmental Sciences, 2016, 49:113-124
    Donahue J M, Abernathy C O. Exposure to inorganic arsenic from fish and shellfish[C]//Chappell W R, Abemathy C O, Calderon R L (Eds.). Arsenic exposure and health effects Ⅲ. Proceedings of the third International Conference on Arsenic Exposure and Health Effects. Elsevier Science Ltd, 1999:89-98
    Zhang L, Gao Y, Wu S, et al. Global impact of atmospheric arsenic on health risk:2005 to 2015[J]. Proceedings of the National Academy of Science, 2020, 117(25):13975-13982
    Li C J, Wang J H, Yan B, et al. Progresses and emerging trends of arsenic research in the past 120 years[J]. Critical Reviews in Environmental Science and Technology, 2020, 51:1306-1353
    Kenyon E M, Hughes M F, Adair B M, et al. Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in C57BL6 mice following subchronic exposure to arsenate in drinking water[J]. Toxicology and Applied Pharmacology, 2008, 232(3):448-455
    Vahter M. Mechanisms of arsenic biotransformation[J]. Toxicology, 2002, 181-182:211-217
    Cullen W, McBride B, Manji H, et al. The metabolism of methylarsine oxide and sulfide[J]. Applied Organometallic Chemistry, 1989, 3:71-78
    Hughes M F, Devesa V, Adair B M, et al. Tissue dosimetry, metabolism and excretion of pentavalent and trivalent monomethylated arsenic in mice after oral administration[J]. Toxicology and Applied Pharmacology, 2005, 208(2):186-197
    Marafante E, Vahter M. The effect of methyltransferase inhibition on the metabolism of[74As]arsenite in mice and rabbits[J]. Chemico-Biological Interactions, 1984, 50(1):49-57
    Marafante E, Vahter M, Norin H, et al. Biotransformation of dimethylarsinic acid in mouse, hamster and man[J]. Journal of Applied Toxicology, 1987, 7(2):111-117
    Shiobara Y, Ogra Y, Suzuki K T. Animal species difference in the uptake of dimethylarsinous acid (DMA(Ⅲ)) by red blood cells[J]. Chemical Research in Toxicology, 2001, 14(10):1446-1452
    Chen H, Yoshida K, Wanibuchi H, et al. Methylation and demethylation of dimethylarsinic acid in rats following chronic oral exposure[J]. Applied Organometallic Chemistry, 1996, 10:741-745
    Adair B M, Moore T, Conklin S D, et al. Tissue distribution and urinary excretion of dimethylated arsenic and its metabolites in dimethylarsinic acid- or arsenate-treated rats[J]. Toxicology and Applied Pharmacology, 2007, 222(2):235-242
    Suzuki K T, Katagiri A, Sakuma Y, et al. Distributions and chemical forms of arsenic after intravenous administration of dimethylarsinic and monomethylarsonic acids to rats[J]. Toxicology and Applied Pharmacology, 2004, 198(3):336-344
    Suzuki K T, Mandal B K, Katagiri A, et al. Dimethylthioarsenicals as arsenic metabolites and their chemical preparations[J]. Chemical Research in Toxicology, 2004, 17(7):914-921
    Molin M, Ulven S M, Meltzer H M, et al. Arsenic in the human food chain, biotransformation and toxicology-Review focusing on seafood arsenic[J]. Journal of Trace Elements in Medicine and Biology:Organ of the Society for Minerals and Trace Elements (GMS), 2015, 31:249-259
    Zhang W, Guo Z Q, Song D D, et al. Arsenic speciation in wild marine organisms and a health risk assessment in a subtropical bay of China[J]. The Science of the Total Environment, 2018, 626:621-629
    Vahter M, Marafante E, Dencker L. Metabolism of arsenobetaine in mice, rats and rabbits[J]. The Science of the Total Environment, 1983, 30:197-211
    Yamauchi H, Kaise T, Yamamura Y. Metabolism and excretion of orally administered arsenobetaine in the hamster[J]. Bulletin of Environmental Contamination and Toxicology, 1986, 36(3):350-355
    Harrington C F, Brima E I, Jenkins R O. Biotransformation of arsenobetaine by microorganisms from the human gastrointestinal tract[J]. Chemical Speciation & Bioavailability, 2008, 20(3):173-180
    Yoshida K, Kuroda K, Inoue Y, et al. Metabolites of arsenobetaine in rats:Does decomposition of arsenobetaine occur in mammals?[J]. Applied Organometallic Chemistry, 2001, 15(4):271-276
    Sakurai T, Kojima C, Ochiai M, et al. Evaluation of in vivo acute immunotoxicity of a major organic arsenic compound arsenobetaine in seafood[J]. International Immunopharmacology, 2004, 4(2):179-184
    Wiklander O P, Nordin J Z, O'Loughlin A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting[J]. Journal of Extracellular Vesicles, 2015, 4:26316
    Zhang W, Guo Z Q, Zhou Y Y, et al. Biotransformation and detoxification of inorganic arsenic in Bombay oyster Saccostrea cucullata[J]. Aquatic Toxicology, 2015, 158:33-40
    Jia Y Y, Wang L, Ma L, et al. Speciation analysis of six arsenic species in marketed shellfish:Extraction optimization and health risk assessment[J]. Food Chemistry, 2018, 244:311-316
    Brockman John D, Brown Ⅳ John W N. Measurement of arsenic species in infant rice cereals by liquid chromatography inductively coupled plasma mass spectrometry[J]. American Journal of Analytical Chemistry, 2012, 3(10):693-697
    Chi L, Xue J C, Tu P C, et al. Gut microbiome disruption altered the biotransformation and liver toxicity of arsenic in mice[J]. Archives of Toxicology, 2019, 93(1):25-35
    Xi S H, Jin Y P, Lv X Q, et al. Distribution and speciation of arsenic by transplacental and early life exposure to inorganic arsenic in offspring rats[J]. Biological Trace Element Research, 2010, 134(1):84-97
    García-Montalvo E A, Valenzuela O L, Sánchez-Peña L C, et al. Dose-dependent urinary phenotype of inorganic arsenic methylation in mice with a focus on trivalent methylated metabolites[J]. Toxicology Mechanisms and Methods, 2011, 21(9):649-655
    Kobayashi Y, Agusa T. Arsenic Metabolism and Toxicity in Humans and Animals:Racial and Species Differences[M]//Yamauchi H, Sun G. (Eds.). Arsenic Contamination in Asia:Biological Effects and Preventive Measures. Singapore:Springer, 2019:13-28
    Coryell M, McAlpine M, Pinkham N V, et al. The gut microbiome is required for full protection against acute arsenic toxicity in mouse models[J]. Nature Communications, 2018, 9(1):5424
    Newcombe C, Raab A, Williams P N, et al. Accumulation or production of arsenobetaine in humans?[J]. Journal of Environmental Monitoring, 2010, 12(4):832-837
    Kaise T, Watanabe S, Itoh K. The acute toxicity of arsenobetaine[J]. Chemosphere, 1985, 14(9):1327-1332
    Nurchi V M, Djordjevic A B, Crisponi G, et al. Arsenic toxicity:Molecular targets and therapeutic agents[J]. Biomolecules, 2020, 10(2):235
    Vahter M, Concha G. Role of metabolism in arsenic toxicity[J]. Pharmacology & Toxicology, 2001, 89(1):1-5
    Kaise T, Yamauchi H, Horiguchi Y, et al. A comparative study on acute toxicity of methylarsonic acid, dimethylarsinic acid and trimethylarsine oxide in mice[J]. Applied Organometallic Chemistry, 1989, 3(3):273-277
    Popowich A, Zhang Q, Le X C. Arsenobetaine:The ongoing mystery[J]. National Science Review, 2016, 3(4):451-458
  • 20221226001-支持信息(提交版).docx
  • 加载中
计量
  • 文章访问数:  1273
  • HTML全文浏览数:  1273
  • PDF下载数:  154
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-12-26
赵芊瑜, 熊海燕, 叶紫君, 黄莉萍, 张伟. 小鼠体内砷甜菜碱向无机砷的生物降解[J]. 生态毒理学报, 2023, 18(3): 326-335. doi: 10.7524/AJE.1673-5897.20221226001
引用本文: 赵芊瑜, 熊海燕, 叶紫君, 黄莉萍, 张伟. 小鼠体内砷甜菜碱向无机砷的生物降解[J]. 生态毒理学报, 2023, 18(3): 326-335. doi: 10.7524/AJE.1673-5897.20221226001
Zhao Qianyu, Xiong Haiyan, Ye Zijun, Huang Liping, Zhang Wei. Biodegradation of Arsenobetaine into Inorganic Arsenic in Mice[J]. Asian journal of ecotoxicology, 2023, 18(3): 326-335. doi: 10.7524/AJE.1673-5897.20221226001
Citation: Zhao Qianyu, Xiong Haiyan, Ye Zijun, Huang Liping, Zhang Wei. Biodegradation of Arsenobetaine into Inorganic Arsenic in Mice[J]. Asian journal of ecotoxicology, 2023, 18(3): 326-335. doi: 10.7524/AJE.1673-5897.20221226001

小鼠体内砷甜菜碱向无机砷的生物降解

    通讯作者: 张伟, E-mail: zh_wei@gzhu.edu.cn
    作者简介: 赵芊瑜(1999—),女,硕士生,研究方向为生态毒理学,E-mail:qianyu_zhao_1230@163.com
  • 广州大学环境科学与工程学院, 广州 510006
基金项目:

广东省基础与应用基础研究基金自然科学基金杰出青年项目(2022B1515020030);广州大学百人计划引进人才科研启动项目(RQ2020057)

摘要: 砷在高浓度下对生物体具有极高的毒性,然而,关于低毒性的砷甜菜碱(AsB)在哺乳动物体内生物转化的研究有限。AsB对人体是否造成潜在健康影响,最近引起了广泛的关注。因此,本研究评估了AsB和无机砷形态在小鼠体内的差异吸收、生物转化和生物积累。为此,C57BL/6J小鼠以1 000 μg·kg-1剂量口服AsB和无机砷(iAs) 14 d。随后,收集组织/器官样本以及尿液和粪便样本进行分析。结果表明,AsB的口服吸收率最高。此外,我们观察到AsB经口服后向砷酸盐(As(Ⅴ))发生显著生物转化,相较于亚砷酸盐(As(Ⅲ))或As(Ⅴ)处理的小鼠,AsB处理小鼠的肝脏、肺和脾脏中砷积累水平更高。在短期接触AsB后,iAs在肺和脾脏中表现出较高的积累水平。总的来说,这些发现提供了强有力的证据,证明在哺乳动物中,AsB经历了向iAs的生物转化,同时表明哺乳动物长期摄入AsB存在潜在的健康风险。

English Abstract

参考文献 (38)

返回顶部

目录

/

返回文章
返回