International Agency for Research on Cancer (IARC). List of Classifications-Agents classified by the IARC Monographs[M]. Lyon:IARC, 2020:1-127
|
Moe B, Peng H Y, Lu X F, et al. Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing[J]. Journal of Environmental Sciences, 2016, 49:113-124
|
Donahue J M, Abernathy C O. Exposure to inorganic arsenic from fish and shellfish[C]//Chappell W R, Abemathy C O, Calderon R L (Eds.). Arsenic exposure and health effects Ⅲ. Proceedings of the third International Conference on Arsenic Exposure and Health Effects. Elsevier Science Ltd, 1999:89-98
|
Zhang L, Gao Y, Wu S, et al. Global impact of atmospheric arsenic on health risk:2005 to 2015[J]. Proceedings of the National Academy of Science, 2020, 117(25):13975-13982
|
Li C J, Wang J H, Yan B, et al. Progresses and emerging trends of arsenic research in the past 120 years[J]. Critical Reviews in Environmental Science and Technology, 2020, 51:1306-1353
|
Kenyon E M, Hughes M F, Adair B M, et al. Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in C57BL6 mice following subchronic exposure to arsenate in drinking water[J]. Toxicology and Applied Pharmacology, 2008, 232(3):448-455
|
Vahter M. Mechanisms of arsenic biotransformation[J]. Toxicology, 2002, 181-182:211-217
|
Cullen W, McBride B, Manji H, et al. The metabolism of methylarsine oxide and sulfide[J]. Applied Organometallic Chemistry, 1989, 3:71-78
|
Hughes M F, Devesa V, Adair B M, et al. Tissue dosimetry, metabolism and excretion of pentavalent and trivalent monomethylated arsenic in mice after oral administration[J]. Toxicology and Applied Pharmacology, 2005, 208(2):186-197
|
Marafante E, Vahter M. The effect of methyltransferase inhibition on the metabolism of[74As]arsenite in mice and rabbits[J]. Chemico-Biological Interactions, 1984, 50(1):49-57
|
Marafante E, Vahter M, Norin H, et al. Biotransformation of dimethylarsinic acid in mouse, hamster and man[J]. Journal of Applied Toxicology, 1987, 7(2):111-117
|
Shiobara Y, Ogra Y, Suzuki K T. Animal species difference in the uptake of dimethylarsinous acid (DMA(Ⅲ)) by red blood cells[J]. Chemical Research in Toxicology, 2001, 14(10):1446-1452
|
Chen H, Yoshida K, Wanibuchi H, et al. Methylation and demethylation of dimethylarsinic acid in rats following chronic oral exposure[J]. Applied Organometallic Chemistry, 1996, 10:741-745
|
Adair B M, Moore T, Conklin S D, et al. Tissue distribution and urinary excretion of dimethylated arsenic and its metabolites in dimethylarsinic acid- or arsenate-treated rats[J]. Toxicology and Applied Pharmacology, 2007, 222(2):235-242
|
Suzuki K T, Katagiri A, Sakuma Y, et al. Distributions and chemical forms of arsenic after intravenous administration of dimethylarsinic and monomethylarsonic acids to rats[J]. Toxicology and Applied Pharmacology, 2004, 198(3):336-344
|
Suzuki K T, Mandal B K, Katagiri A, et al. Dimethylthioarsenicals as arsenic metabolites and their chemical preparations[J]. Chemical Research in Toxicology, 2004, 17(7):914-921
|
Molin M, Ulven S M, Meltzer H M, et al. Arsenic in the human food chain, biotransformation and toxicology-Review focusing on seafood arsenic[J]. Journal of Trace Elements in Medicine and Biology:Organ of the Society for Minerals and Trace Elements (GMS), 2015, 31:249-259
|
Zhang W, Guo Z Q, Song D D, et al. Arsenic speciation in wild marine organisms and a health risk assessment in a subtropical bay of China[J]. The Science of the Total Environment, 2018, 626:621-629
|
Vahter M, Marafante E, Dencker L. Metabolism of arsenobetaine in mice, rats and rabbits[J]. The Science of the Total Environment, 1983, 30:197-211
|
Yamauchi H, Kaise T, Yamamura Y. Metabolism and excretion of orally administered arsenobetaine in the hamster[J]. Bulletin of Environmental Contamination and Toxicology, 1986, 36(3):350-355
|
Harrington C F, Brima E I, Jenkins R O. Biotransformation of arsenobetaine by microorganisms from the human gastrointestinal tract[J]. Chemical Speciation & Bioavailability, 2008, 20(3):173-180
|
Yoshida K, Kuroda K, Inoue Y, et al. Metabolites of arsenobetaine in rats:Does decomposition of arsenobetaine occur in mammals?[J]. Applied Organometallic Chemistry, 2001, 15(4):271-276
|
Sakurai T, Kojima C, Ochiai M, et al. Evaluation of in vivo acute immunotoxicity of a major organic arsenic compound arsenobetaine in seafood[J]. International Immunopharmacology, 2004, 4(2):179-184
|
Wiklander O P, Nordin J Z, O'Loughlin A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting[J]. Journal of Extracellular Vesicles, 2015, 4:26316
|
Zhang W, Guo Z Q, Zhou Y Y, et al. Biotransformation and detoxification of inorganic arsenic in Bombay oyster Saccostrea cucullata[J]. Aquatic Toxicology, 2015, 158:33-40
|
Jia Y Y, Wang L, Ma L, et al. Speciation analysis of six arsenic species in marketed shellfish:Extraction optimization and health risk assessment[J]. Food Chemistry, 2018, 244:311-316
|
Brockman John D, Brown Ⅳ John W N. Measurement of arsenic species in infant rice cereals by liquid chromatography inductively coupled plasma mass spectrometry[J]. American Journal of Analytical Chemistry, 2012, 3(10):693-697
|
Chi L, Xue J C, Tu P C, et al. Gut microbiome disruption altered the biotransformation and liver toxicity of arsenic in mice[J]. Archives of Toxicology, 2019, 93(1):25-35
|
Xi S H, Jin Y P, Lv X Q, et al. Distribution and speciation of arsenic by transplacental and early life exposure to inorganic arsenic in offspring rats[J]. Biological Trace Element Research, 2010, 134(1):84-97
|
García-Montalvo E A, Valenzuela O L, Sánchez-Peña L C, et al. Dose-dependent urinary phenotype of inorganic arsenic methylation in mice with a focus on trivalent methylated metabolites[J]. Toxicology Mechanisms and Methods, 2011, 21(9):649-655
|
Kobayashi Y, Agusa T. Arsenic Metabolism and Toxicity in Humans and Animals:Racial and Species Differences[M]//Yamauchi H, Sun G. (Eds.). Arsenic Contamination in Asia:Biological Effects and Preventive Measures. Singapore:Springer, 2019:13-28
|
Coryell M, McAlpine M, Pinkham N V, et al. The gut microbiome is required for full protection against acute arsenic toxicity in mouse models[J]. Nature Communications, 2018, 9(1):5424
|
Newcombe C, Raab A, Williams P N, et al. Accumulation or production of arsenobetaine in humans?[J]. Journal of Environmental Monitoring, 2010, 12(4):832-837
|
Kaise T, Watanabe S, Itoh K. The acute toxicity of arsenobetaine[J]. Chemosphere, 1985, 14(9):1327-1332
|
Nurchi V M, Djordjevic A B, Crisponi G, et al. Arsenic toxicity:Molecular targets and therapeutic agents[J]. Biomolecules, 2020, 10(2):235
|
Vahter M, Concha G. Role of metabolism in arsenic toxicity[J]. Pharmacology & Toxicology, 2001, 89(1):1-5
|
Kaise T, Yamauchi H, Horiguchi Y, et al. A comparative study on acute toxicity of methylarsonic acid, dimethylarsinic acid and trimethylarsine oxide in mice[J]. Applied Organometallic Chemistry, 1989, 3(3):273-277
|
Popowich A, Zhang Q, Le X C. Arsenobetaine:The ongoing mystery[J]. National Science Review, 2016, 3(4):451-458
|