环境相关浓度的氟西汀和帕罗西汀对章鱼脑组织五羟色胺能系统的影响
Effects of Environmentally Relevant Concentrations of Fluoxetine and Paroxetine on Serotonergic Neurotransmitter Systems in Octopus Brain Tissue
-
摘要: 近年来,随着抑郁症患者数量激增,抗抑郁性药物的使用量显著增加。由于药物具有特殊活性,常会对非目标生物的生理功能产生不良影响,干扰这些生物的生长发育,对其健康产生严重威胁。因此,本研究选取通过抑制五羟色胺(serotonin, 5-HT)转运体提高突触间隙5-HT水平发挥治疗作用的SSRI(selective serotonin reuptake inhibitor)类抗抑郁代表性药物氟西汀和帕罗西汀,探讨2种药物对章鱼脑组织5-HT能神经递质系统功能的影响。野生成体短蛸章鱼(O. ochellatus)于环境浓度的氟西汀、帕罗西汀溶液中连续暴露14 d,收集脑组织。通过qPCR和Western blot技术分析药物对章鱼脑组织5-HT能神经递质系统主要功能分子转录及表达水平的影响。结果显示,氟西汀和帕罗西汀引起章鱼脑组织中5-HT能系统重要功能分子转录及表达水平异常,表现为5-HTR1、5-HTR1B、5-HTR2A、SERT mRNA转录水平降低及5-HTR1、5-HTR1B、5-HTR2A、SERT蛋白表达水平升高,且具有药物特异性和剂量依赖性。此外,氟西汀与帕罗西汀混合暴露对章鱼脑5-HT能系统的影响程度弱于两者单独暴露,提示2种药物在干扰章鱼脑5-HT能系统正常功能过程中可能存在拮抗作用,通过比较二者的半衰期,认为氟西汀对于水生生态系统的影响更大。本研究结果表明,SSRI类抗抑郁药物氟西汀和帕罗西汀暴露可引起章鱼脑组织5-HT能神经系统主要功能分子转录与表达水平异常,可能干扰其正常功能,严重威胁章鱼健康。本研究为进一步研究抗抑郁症药物对章鱼神经系统的不良影响提供科学依据,为研究其他药物对海洋生物的健康损害效应提供参考。Abstract: In recent years, the use of antidepressants has increased significantly with the widespread epidemic of depression. Because of their special activity, they often have adverse effects on the physiological functions of non-target organisms, interfere with the growth and development of these organisms, and seriously threaten their health. Fluoxetine and paroxetine are the representative selective serotonin reuptake inhibitor (SSRI) antidepressants, which play a therapeutic role in improving the level of serotonin (5-HT) of the synaptic cleft by inhibiting the 5-HT transporter (SERT). In this study, we selected them to explore their effects on the function of 5-HT energy neurotransmitter system in the brain of octopus (O. ochellatus). Adult octopus were exposed to fluoxetine and paroxetine solutions for 14 d. And the brain tissues were collected after exposure. Quantitative RT-PCR (qPCR) and Western blot were applied to detect the main functional molecules of 5-HT neurotransmitter system, both gene and protein expression in octopus brain tissue. The results showed that fluoxetine and paroxetine induced abnormal transcription of the important functional molecules of 5-HT energy system in octopus brain tissue. The transcriptional expression levels of 5-HTR1、5-HTR1B、5-HTR2A, and SERT decreased, and the translational expression levels of 5-HTR1、5-HTR1B、5-HTR2A, and SERT increased with drug specificity and dose dependence. In addition, the effects of fluoxetine and paroxetine combined exposure on octopus brain 5-HT energy system were weaker than those of the two alone, suggesting that the two drugs might have antagonistic effects on the normal functioning of octopus brain 5-HT energy system. By comparing their half-life, we believed that fluoxetine had a greater impact on the aquatic ecosystem. Our results indicated that the exposure to fluoxetine and paroxetine could cause abnormal transcription of the main functional molecules of 5-HT energy nervous system in the octopus brain, leading to abnormal manifestations such as delayed physiological development and inhibition of feeding behavior of octopus, which seriously threatened its health. This study provided a scientific basis for further study of the adverse effects of antidepressants on the nervous system of octopus and a reference for the study of health damage effects of other drugs on marine organisms.
-
Key words:
- fluoxetine /
- paroxetine /
- short-arm octopus /
- 5-HT neurotransmitter systems
-
-
Dalahmeh S, Björnberg E, Elenström A K, et al. Pharmaceutical pollution of water resources in Nakivubo wetlands and Lake Victoria, Kampala, Uganda[J]. Science of the Total Environment, 2020, 710:136347 Mompelat S, Le Bot B, Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water[J]. Environment International, 2009, 35(5):803-814 Gracia-Lor E, Sancho J V, Serrano R, et al. Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia[J]. Chemosphere, 2012, 87(5):453-462 Kreke N, Dietrich D R. Physiological endpoints for potential SSRI interactions in fish[J]. Critical Reviews in Toxicology, 2008, 38(3):215-247 Cipriani A, Furukawa T A, Salanti G, et al. Comparative efficacy and acceptability of 12 new-generation antidepressants:A multiple-treatments meta-analysis[J]. Lancet, 2009, 373(9665):746-758 Pratt L A, Brody D J, Gu Q P. Antidepressant use in persons aged 12 and over:United States, 2005-2008[J]. NCHS Data Brief, 2011(76):1-8 Schultz M M, Furlong E T, Kolpin D W, et al. Antidepressant pharmaceuticals in two U.S. effluent-impacted streams:Occurrence and fate in water and sediment, and selective uptake in fish neural tissue[J]. Environmental Science & Technology, 2010, 44(6):1918-1925 Silva L J G, Lino C M, Meisel L M, et al. Selective serotonin re-uptake inhibitors (SSRIs) in the aquatic environment:An ecopharmacovigilance approach[J]. Science of the Total Environment, 2012, 437:185-195 Gulkowska A, Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Research, 2008, 42(1-2):395-403 Lajeunesse A, Gagnon C, Sauvé S. Determination of basic antidepressants and their N-desmethyl metabolites in raw sewage and wastewater using solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Analytical Chemistry, 2008, 80(14):5325-5333 Schultz M M, Furlong E T. Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS[J]. Analytical Chemistry, 2008, 80(5):1756-1762 Dorelle L S, Da Cuña R H, Rey Vázquez G, et al. The SSRI fluoxetine exhibits mild effects on the reproductive axis in the cichlid fish Cichlasoma dimerus (Teleostei, Cichliformes)[J]. Chemosphere, 2017, 171:370-378 Christensen A M, Markussen B, Baun A, et al. Probabilistic environmental risk characterization of pharmaceuticals in sewage treatment plant discharges[J]. Chemosphere, 2009, 77(3):351-358 Metcalfe C D, Chu S G, Judt C, et al. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed[J]. Environmental Toxicology and Chemistry, 2010, 29(1):79-89 Silva L J G, Pereira A M P T, Meisel L M, et al. Reviewing the serotonin reuptake inhibitors (SSRIs) footprint in the aquatic biota:Uptake, bioaccumulation and ecotoxicology[J]. Environmental Pollution, 2015, 197:127-143 Barbosa M, Inocentes N, Soares A M V M, et al. Synergy effects of fluoxetine and variability in temperature lead to proportionally greater fitness costs in Daphnia:A multigenerational test[J]. Aquatic Toxicology, 2017, 193:268-275 Styrishave B, Halling-Sørensen B, Ingerslev F. Environmental risk assessment of three selective serotonin reuptake inhibitors in the aquatic environment:A case study including a cocktail scenario[J]. Environmental Toxicology and Chemistry, 2011, 30(1):254-261 Lee P N, Callaerts P, De Couet H G, et al. Cephalopod Hox genes and the origin of morphological novelties[J]. Nature, 2003, 424(6952):1061-1065 Baratte S, Bonnaud L. Evidence of early nervous differentiation and early catecholaminergic sensory system during Sepia officinalis embryogenesis[J]. The Journal of Comparative Neurology, 2009, 517(4):539-549 Shigeno S, Sasaki T, Moritaki T, et al. Evolution of the cephalopod head complex by assembly of multiple molluscan body parts:Evidence from Nautilus embryonic development[J]. Journal of Morphology, 2008, 269(1):1-17 Navet S, Andouche A, Baratte S, et al. Shh and Pax6 have unconventional expression patterns in embryonic morphogenesis in Sepia officinalis (Cephalopoda)[J]. Gene Expression Patterns, 2009, 9(7):461-467 Sumpter J P, Donnachie R L, Johnson A C. The apparently very variable potency of the anti-depressant fluoxetine[J]. Aquatic Toxicology, 2014, 151:57-60 Barnes N M, Sharp T. A review of central 5-HT receptors and their function[J]. Neuropharmacology, 1999, 38(8):1083-1152 Messenger J B. Neurotransmitters of cephalopods[J]. Invertebrate Neuroscience, 1996, 2:95-114 Lehr T, Schipp R. Serotonergic regulation of the central heart auricles of Sepia officinalis L. (Mollusca, Cephalopoda)[J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 138(1):69-77 Rosen S C, Weiss K R, Goldstein R S, et al. The role of a modulatory neuron in feeding and satiation in Aplysia:Effects of lesioning of the serotonergic metacerebral cells[J]. The Journal of Neuroscience:The Official Journal of the Society for Neuroscience, 1989, 9(5):1562-1578 MacKey S, Carew T J. Locomotion in Aplysia:Triggering by serotonin and modulation by bag cell extract[J]. The Journal of Neuroscience:The Official Journal of the Society for Neuroscience, 1983, 3(7):1469-1477 Glanzman D L, MacKey S L, Hawkins R D, et al. Depletion of serotonin in the nervous system of Aplysia reduces the behavioral enhancement of gill withdrawal as well as the heterosynaptic facilitation produced by tail shock[J]. The Journal of Neuroscience:The Official Journal of the Society for Neuroscience, 1989, 9(12):4200-4213 Wang Q, He M X. Molecular characterization and analysis of a putative 5-HT receptor involved in reproduction process of the pearl oyster Pinctada fucata[J]. General and Comparative Endocrinology, 2014, 204:71-79 Andrews P L R, Messenger J B, Tansey E M. The chromatic and motor effects of neurotransmitter injection in intact and brain-lesioned octopus[J]. Journal of the Marine Biological Association of the United Kingdom, 1983, 63(2):355-370 Shomrat T, Feinstein N, Klein M, et al. Serotonin is a facilitatory neuromodulator of synaptic transmission and "reinforces" long-term potentiation induction in the vertical lobe of Octopus vulgaris[J]. Neuroscience, 2010, 169(1):52-64 Christensen A M, Markussen B, Baun A, et al. Probabilistic environmental risk characterization of pharmaceuticals in sewage treatment plant discharges[J]. Chemosphere, 2009, 77(3):351-358 Metcalfe C D, Chu S G, Judt C, et al. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed[J]. Environmental Toxicology and Chemistry, 2010, 29(1):79-89 Messenger J B, Nixon M, Ryan K P. Magnesium chloride as an anaesthetic for cephalopods[J]. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology, 1985, 82(1):203-205 Mills K C. Serotonin syndrome[J]. American Family Physician, 1995, 52(5):1475-1482 Cunha V, Rodrigues P, Santos M M, et al. Fluoxetine modulates the transcription of genes involved in serotonin, dopamine and adrenergic signalling in zebrafish embryos[J]. Chemosphere, 2018, 191:954-961 Amador M H B, McDonald M D. Molecular and functional characterization of the Gulf toadfish serotonin transporter SLC6A4[J]. The Journal of Experimental Biology, 2018, 221(Pt 7):jeb170928 Gaworecki K M, Klaine S J. Behavioral and biochemical responses of hybrid striped bass during and after fluoxetine exposure[J]. Aquatic Toxicology, 2008, 88(4):207-213 Franzellitti S, Buratti S, Valbonesi P, et al. The mode of action (MOA) approach reveals interactive effects of environmental pharmaceuticals on Mytilus galloprovincialis[J]. Aquatic Toxicology, 2013, 140-141:249-256 Di Poi C, Darmaillacq A S, Dickel L, et al. Effects of perinatal exposure to waterborne fluoxetine on memory processing in the cuttlefish Sepia officinalis[J]. Aquatic Toxicology, 2013, 132-133:84-91 陈瑜, 张博, 李铁军. 氟西汀和帕罗西汀对斑马鱼脑组织5-HT能神经传导系统的影响[J]. 浙江海洋大学学报(自然科学版), 2019, 38(4 ):295-302Chen Y, Zhang B, Li T J. Effects of SSRIs antidepressants fluoxetine and paroxetine on 5-HTergic neurotransmission system in zebrafish brain tissue[J]. Journal of Zhejiang Ocean University (Natural Science), 2019, 38(4):295-302(in Chinese)
Di Poi C, Darmaillacq A S, Dickel L, et al. Effects of perinatal exposure to waterborne fluoxetine on memory processing in the cuttlefish Sepia officinalis[J]. Aquatic Toxicology, 2013, 132-133:84-91 Katona C, Livingston G. How well do antidepressants work in older people? A systematic review of Number Needed to Treat[J]. Journal of Affective Disorders, 2002, 69(1-3):47-52 Sun Y F, Liang Y F, Jiao Y, et al. Comparative efficacy and acceptability of antidepressant treatment in poststroke depression:A multiple-treatments meta-analysis[J]. BMJ Open, 2017, 7(8):e016499 Geretsegger C, Böhmer F, Ludwig M. Paroxetine in the elderly depressed patient:Randomized comparison with fluoxetine of efficacy, cognitive and behavioural effects[J]. International Clinical Psychopharmacology, 1994, 9(1):25-29 Fava M, Rosenbaum J F, Hoog S L, et al. Fluoxetine versus sertraline and paroxetine in major depression:Tolerability and efficacy in anxious depression[J]. Journal of Affective Disorders, 2000, 59(2):119-126 Fava M, Amsterdam J D, Deltito J A, et al. A double-blind study of paroxetine, fluoxetine, and placebo in outpatients with major depression[J]. Annals of Clinical Psychiatry:Official Journal of the American Academy of Clinical Psychiatrists, 1998, 10(4):145-150 Sharp T, Barnes N M. Central 5-HT receptors and their function; present and future[J]. Neuropharmacology, 2020, 177:108155 Weaver R F著. 郑用琏等译. 分子生物学[M]. 第五版. 北京:科学出版社, 2013:558-579 Jovanovic H, Cerin A, Karlsson P, et al. A PET study of 5-HT1A receptors at different phases of the menstrual cycle in women with premenstrual dysphoria[J]. Psychiatry Research, 2006, 148(2-3):185-193 Vandenberg L N, Colborn T, Hayes T B, et al. Hormones and endocrine-disrupting chemicals:Low-dose effects and nonmonotonic dose responses[J]. Endocrine Reviews, 2012, 33(3):378-455 Franzellitti S, Buratti S, Valbonesi P, et al. The mode of action (MOA) approach reveals interactive effects of environmental pharmaceuticals on Mytilus galloprovincialis[J]. Aquatic Toxicology, 2013, 140-141:249-256 Guler Y, Ford A T. Anti-depressants make amphipods see the light[J]. Aquatic Toxicology, 2010, 99(3):397-404 Schloss P, Williams D C. The serotonin transporter:A primary target for antidepressant drugs[J]. Journal of Psychopharmacology, 1998, 12(2):115-121 Lazzara R, Blázquez M, Porte C, et al. Low environmental levels of fluoxetine induce spawning and changes in endogenous estradiol levels in the zebra mussel Dreissena polymorpha[J]. Aquatic Toxicology, 2012, 106-107:123-130 Meredith-Williams M, Carter L J, Fussell R, et al. Uptake and depuration of pharmaceuticals in aquatic invertebrates[J]. Environmental Pollution, 2012, 165:250-258 Brodin T, Piovano S, Fick J, et al. Ecological effects of pharmaceuticals in aquatic systems-Impacts through behavioural alterations[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2014, 369(1656):20130580 Campos B, Rivetti C, Kress T, et al. Depressing antidepressant:Fluoxetine affects serotonin neurons causing adverse reproductive responses in Daphnia magna[J]. Environmental Science & Technology, 2016, 50(11):6000-6007 Valenti T W, Gould G G, Berninger J P, et al. Human therapeutic plasma levels of the selective serotonin reuptake inhibitor (SSRI) sertraline decrease serotonin reuptake transporter binding and shelter-seeking behavior in adult male fathead minnows[J]. Environmental Science & Technology, 2012, 46(4):2427-2435 Bidel F, Di Poi C, Imarazene B, et al. Pre-hatching fluoxetine-induced neurochemical, neurodevelopmental, and immunological changes in newly hatched cuttlefish[J]. Environmental Science and Pollution Research International, 2016, 23(6):5030-5045 Melnyk-Lamont N, Best C, Gesto M, et al. The antidepressant venlafaxine disrupts brain monoamine levels and neuroendocrine responses to stress in rainbow trout[J]. Environmental Science & Technology, 2014, 48(22):13434-13442 Heyland A, Bastien T, Halliwushka K. Transgenerational reproductive effects of two serotonin reuptake inhibitors after acute exposure in Daphnia magna embryos[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2020, 238:108875 -

计量
- 文章访问数: 1087
- HTML全文浏览数: 1087
- PDF下载数: 115
- 施引文献: 0