汞对雪衣藻光合系统Ⅱ及能量分配的影响

夏亦雪, 许萍萍, 阮港, 涂晓杰, 毕永红. 汞对雪衣藻光合系统Ⅱ及能量分配的影响[J]. 生态毒理学报, 2023, 18(3): 388-397. doi: 10.7524/AJE.1673-5897.20220919002
引用本文: 夏亦雪, 许萍萍, 阮港, 涂晓杰, 毕永红. 汞对雪衣藻光合系统Ⅱ及能量分配的影响[J]. 生态毒理学报, 2023, 18(3): 388-397. doi: 10.7524/AJE.1673-5897.20220919002
Xia Yixue, Xu Pingping, Ruan Gang, Tu Xiaojie, Bi Yonghong. Toxic Effects of Mercury on Photosynthetic System Ⅱ and Energy Allocation in Chlamydomonas nivalis[J]. Asian journal of ecotoxicology, 2023, 18(3): 388-397. doi: 10.7524/AJE.1673-5897.20220919002
Citation: Xia Yixue, Xu Pingping, Ruan Gang, Tu Xiaojie, Bi Yonghong. Toxic Effects of Mercury on Photosynthetic System Ⅱ and Energy Allocation in Chlamydomonas nivalis[J]. Asian journal of ecotoxicology, 2023, 18(3): 388-397. doi: 10.7524/AJE.1673-5897.20220919002

汞对雪衣藻光合系统Ⅱ及能量分配的影响

    作者简介: 夏亦雪(1999—),女,硕士研究生,研究方向为生态毒理学,E-mail:xiayixue@ihb.ac.cn
    通讯作者: 毕永红, E-mail: biyh@ihb.ac.cn
  • 基金项目:

    国家重点研发计划项目(2020YFA0907400)

  • 中图分类号: X171.5

Toxic Effects of Mercury on Photosynthetic System Ⅱ and Energy Allocation in Chlamydomonas nivalis

    Corresponding author: Bi Yonghong, biyh@ihb.ac.cn
  • Fund Project:
  • 摘要: 为探究汞离子对藻细胞的毒性效应,选择雪衣藻(Chlamydomonas nivalis)作为受试生物,测定了不同浓度汞离子处理96 h,雪衣藻的生长、光合色素、叶绿素荧光活性和光合放氧速率等指标。结果显示,随着汞离子浓度升高,雪衣藻单位细胞叶绿素a和叶绿素b含量均显著减少,光系统Ⅱ(PSⅡ)光合活性显著降低,PSⅡ受体侧的电子传递能力相对下降,造成电子积累,导致能量分配失衡,最终抑制了细胞生长;同时,雪衣藻改变其光合能量分配策略来增加细胞对汞胁迫的耐受能力,既满足自身生长和代谢所需能量,又保护和缓解汞对其光合系统的损伤、确保细胞的存活。研究结果确认,叶绿素a、叶绿素b和PSⅡ的电子传递链均是汞离子的作用靶标。本研究有助于深入认识汞对藻细胞的作用机制,为评估汞的生态毒性提供依据。
  • 加载中
  • 董佳, 常军军, 陈金全. 土壤汞污染修复技术研究进展[J]. 环境科学导刊, 2019, 38(S2):92-96

    Dong J, Chang J J, Chen J Q. Research progress on remediation techniques for mercury-contaminated soils[J]. Environmental Science Survey, 2019, 38(S2):92-96(in Chinese)

    Feng X B, Li P, Fu X W, et al. Mercury pollution in China:Implications on the implementation of the Minamata Convention[J]. Environmental Science Processes & Impacts, 2022, 24(5):634-648
    段志斌, 王济, 安吉平, 等. 汞矿山废弃地土壤汞污染研究[J]. 环境科学与管理, 2016, 41(11):41-44

    Duan Z B, Wang J, An J P, et al. Review on mercury pollution of soil in mining wasteland[J]. Environmental Science and Management, 2016, 41(11):41-44(in Chinese)

    陈嘉龙. 汞污染的危害与防范技术[J]. 中国高新区, 2017(23):177Chen J L. Harm of mercury pollution and its prevention technology[J]. Science & Technology Industry Parks, 2017(23

    ):177(in Chinese)

    王利, 王全辉. 发达国家和地区汞污染防治对我国的启示[J]. 环境保护与循环经济, 2019, 39(10):74-78

    Wang L, Wang Q H. Enlightenment of prevention and control of mercury pollution in developed countries and regions to China[J]. Environmental Protection and Circular Economy, 2019, 39(10):74-78(in Chinese)

    Jinadasa B K K K, Jayasinghe G D T M, Pohl P, et al. Mitigating the impact of mercury contaminants in fish and other seafood-A review[J]. Marine Pollution Bulletin, 2021, 171:112710
    Mao Y Q, Liu W G, Yang X D, et al. Syntrichia caninervis adapt to mercury stress by altering submicrostructure and physiological properties in the Gurbantünggüt Desert[J]. Scientific Reports, 2022, 12(1):11717
    Ibrahim M, Nawaz S, Iqbal K, et al. Plant-derived smoke solution alleviates cellular oxidative stress caused by arsenic and mercury by modulating the cellular antioxidative defense system in wheat[J]. Plants, 2022, 11(10):1379
    Puzon J J M, Rivero G C, Serrano J E. Antioxidant responses in the leaves of mercury-treated Eichhornia crassipes (Mart.) Solms.[J]. Environmental Monitoring and Assessment, 2014, 186(10):6889-6901
    Rai L C, Singh A K, Mallick N. Studies on photosynthesis, the associated electron transport system and some physiological variables of Chlorella vulgaris under heavy metal stress[J]. Journal of Plant Physiology, 1991, 137(4):419-424
    Murthy S, Mohanty P. Mercury ions inhibit photosynthetic electron transport at multiple sites in the cyanobacterium Synechococcus 6301[J]. Journal of Biosciences, 1993, 18(3):355-360
    Deng C N, Zhang D Y, Pan X L, et al. Toxic effects of mercury on PSⅠ and PSⅡ activities, membrane potential and transthylakoid proton gradient in Microsorium pteropus[J]. Journal of Photochemistry and Photobiology B, Biology, 2013, 127:1-7
    El-Sheekh M. Inhibition of the photosynthetic electron transport in the unicellular green alga Chlorella kessleri by mercury at multiple sites[J]. Cytobios-cambridge, 1999, 1:25-38
    Williams W E, Gorton H L, Vogelmann T C. Surface gas-exchange processes of snow algae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(2):562-566
    吕娜. 雪衣藻响应和适应环境胁迫分子调节的多组学研究[D]. 广州:华南理工大学, 2014:159-161Lv N. Molecular regulation of snow alga Chlamydomonas nivalis in response to stress conditions using multi-omics study[D]. Guangzhou:South China University of Technology, 2014:159

    -161(in Chinese)

    耿予欢, 魏东, 李国基, 等. 极地雪衣藻的研究进展[J]. 天然产物研究与开发, 2007, 19(1):175-179

    Geng Y H, Wei D, Li G J, et al. Research progress on Chlamydomonas nivalis[J]. Natural Product Research and Development, 2007, 19(1):175-179(in Chinese)

    Lichtenthaler H, Wellburn A. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Analysis, 1983, 11(5):591-592
    Lu N, Wei D, Jiang X L, et al. Fatty acids profiling and biomarker identification in snow alga Chlamydomonas nivalis by NaCl stress using GC/MS and multivariate statistical analysis[J]. Analytical Letters, 2012, 45(10):1172-1183
    冉小飞, 刘瑞, 白芳, 等. 微囊藻生长及光合系统Ⅱ对重金属镉的响应[J]. 水生生物学报, 2015, 39(3):627-632

    Ran X F, Liu R, Bai F, et al. The response on the growth and photosystem Ⅱ of Microcystis aeruginosa to cadmium, a heavy metal[J]. Acta Hydrobiologica Sinica, 2015, 39(3):627-632(in Chinese)

    Strasser R, Tsimilli-Michael M, Srivastava A. Analysis of the Chlorophyll a Fluorescence Transient[M]//Chlorophyll a Fluorescence. Dordrecht:Springer, 2004:321-362
    刘璐, 闫浩, 夏文彤, 等. 镉对铜绿微囊藻和斜生栅藻的毒性效应[J]. 中国环境科学, 2014, 34(2):478-484

    Liu L, Yan H, Xia W T, et al. Toxic effect of cadmium on Microcysis aeruginosa and Scenedesmus obliquus[J]. China Environmental Science, 2014, 34(2):478-484(in Chinese)

    韩宏英. 汞对斜生栅藻(Scenedesmus obliquus)生长发育及光合作用的影响[J]. 环境科学学报, 1984, 4(2):157-164

    Han H Y. Effect of mercury on growth, development and photosynthesis of Scenedesmus obliquus[J]. Acta Scientiae Circumstantiae, 1984, 4(2):157-164(in Chinese)

    王文欣, 饶本强. 实验室条件下Hg2+胁迫对集球藻生理生化特性的影响[J]. 信阳农业高等专科学校学报, 2012, 22(3):92-96

    , 100Wang W X, Rao B Q. Study on the physiological and biochemical properties of Palmellococcus sp. subjected to Hg2+ stress in laboratory condition[J]. Journal of Xinyang Agricultural College, 2012, 22(3):92-96, 100(in Chinese)

    牟文, 熊丽, 胡芹芹, 等. HgCl2对斜生栅藻(Scenedesmus obliquus)生理生化特性的影响[J]. 生态毒理学报, 2009, 4(6):854-859

    Mu W, Xiong L, Hu Q Q, et al. Effects of HgCl2 on physiological and biochemical characteristics of Scenedesmus obliquus[J]. Asian Journal of Ecotoxicology, 2009, 4(6):854-859(in Chinese)

    Stobart A K, Griffiths W T, Ameen-Bukhari I, et al. The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley[J]. Physiologia Plantarum, 1985, 63(3):293-298
    Plekhanov S E, Chemeris Y K. Early toxic effects of zinc, cobalt, and cadmium on photosynthetic activity of the green alga Chlorella pyrenoidosa Chick S-39[J]. Biology Bulletin of the Russian Academy of Sciences, 2003, 30(5):506-511
    Strasser R J, Tsimilli-Michael M, Qiang S, et al. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. Biochimica et Biophysica Acta, 2010, 1797(6-7):1313-1326
    Strasser B J. Donor side capacity of photosystem Ⅱ probed by chlorophyll a fluorescence transients[J]. Photosynthesis Research, 1997, 52(2):147-155
    Xia J R, Li Y J, Zou D H. Effects of salinity stress on PSⅡ in Ulva lactuca as probed by chlorophyll fluorescence measurements[J]. Aquatic Botany, 2004, 80(2):129-137
    李明, 潘晓洁, 邹怡, 等. Hg2+胁迫对3种微藻生长和叶绿素荧光特性的影响[J]. 水生态学杂志, 2012, 33(2):96-99

    Li M, Pan X J, Zou Y, et al. Effects of Hg2+ exposure on the growth and chlorophyll fluorescence of three microalgal strains[J]. Journal of Hydroecology, 2012, 33(2):96-99(in Chinese)

    Marcelle R, Clijsters H, Poucke M, et al. Effects of Stress on Photo-synthesis[M]. The Hague:Martinu Nijhoff, 1983:371-382
    Baumann H A, Morrison L, Stengel D B. Metal accumulation and toxicity measured by PAM-Chlorophyll fluorescence in seven species of marine macroalgae[J]. Ecotoxicology and Environmental Safety, 2009, 72(4):1063-1075
    邹晓娟. 盐胁迫对淡水螺旋藻的生理效应[D]. 南京:南京农业大学, 2015:45-48Zou X J. The physiological effects of salinity stress on fresh Spirulina platensis[D]. Nanjing:Nanjing Agricultural University, 2015:45

    -48(in Chinese)

    Platt T, Gallegos C, Harrison W G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton[J]. Publications- Astronomical Society of Japan, 1980, 57(57):341-345
    夏建荣, 邹定辉. 利用OJIP叶绿素a荧光评估干出对石莼(Ulva lactuca)光系统Ⅱ的影响[J]. 海洋通报, 2007, 26(4):50-55

    Xia J R, Zou D H. Effects of desiccation on PSⅡ performance in Ulva lactuca assessed with OJIP chlorophyll a fluorescence transients[J]. Marine Science Bulletin, 2007, 26(4):50-55(in Chinese)

    梁英, 冯力霞, 田传远, 等. 盐胁迫对塔胞藻生长及叶绿素荧光动力学的影响[J]. 中国海洋大学学报(自然科学版), 2006, 36(5):726-732Liang Y, Feng L X, Tian C Y, et al. Effects of salt stress on the growth and chlorophyll fluorescence of Pyramidomonas sp.[J]. Periodical of Ocean University of China, 2006, 36(5):726-732(in Chinese)
    贺新宇, 刘黎, 付君珂, 等. 重金属镉对拟柱孢藻(Cylindrospermopsis raciborskii)PSⅡ及能量分配特征的影响效应[J]. 湖泊科学, 2019, 31(6):1612-1622

    He X Y, Liu L, Fu J K, et al. Toxic effects and energy distribution characteristics of photosynthetic system Ⅱ (PSⅡ) in Cylindrospermopsis raciborskii exposed to heavy metal cadmium[J]. Journal of Lake Sciences, 2019, 31(6):1612-1622(in Chinese)

    许萍萍, 涂晓杰, 成凤凤, 等. 庆大霉素对斜生栅藻生长与光合活性的影响[J]. 环境科学与技术, 2021, 44(8):146-153

    Xu P P, Tu X J, Cheng F F, et al. Toxic effects of gentamicin on growth and activity of photosynthetic system Ⅱ of Scenedesmus obliquus[J]. Environmental Science & Technology, 2021, 44(8):146-153(in Chinese)

  • 加载中
计量
  • 文章访问数:  1596
  • HTML全文浏览数:  1596
  • PDF下载数:  125
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-09-19
夏亦雪, 许萍萍, 阮港, 涂晓杰, 毕永红. 汞对雪衣藻光合系统Ⅱ及能量分配的影响[J]. 生态毒理学报, 2023, 18(3): 388-397. doi: 10.7524/AJE.1673-5897.20220919002
引用本文: 夏亦雪, 许萍萍, 阮港, 涂晓杰, 毕永红. 汞对雪衣藻光合系统Ⅱ及能量分配的影响[J]. 生态毒理学报, 2023, 18(3): 388-397. doi: 10.7524/AJE.1673-5897.20220919002
Xia Yixue, Xu Pingping, Ruan Gang, Tu Xiaojie, Bi Yonghong. Toxic Effects of Mercury on Photosynthetic System Ⅱ and Energy Allocation in Chlamydomonas nivalis[J]. Asian journal of ecotoxicology, 2023, 18(3): 388-397. doi: 10.7524/AJE.1673-5897.20220919002
Citation: Xia Yixue, Xu Pingping, Ruan Gang, Tu Xiaojie, Bi Yonghong. Toxic Effects of Mercury on Photosynthetic System Ⅱ and Energy Allocation in Chlamydomonas nivalis[J]. Asian journal of ecotoxicology, 2023, 18(3): 388-397. doi: 10.7524/AJE.1673-5897.20220919002

汞对雪衣藻光合系统Ⅱ及能量分配的影响

    通讯作者: 毕永红, E-mail: biyh@ihb.ac.cn
    作者简介: 夏亦雪(1999—),女,硕士研究生,研究方向为生态毒理学,E-mail:xiayixue@ihb.ac.cn
  • 1. 中国科学院水生生物研究所, 淡水生态与生物技术国家重点试验室, 武汉 430072;
  • 2. 中国科学院大学, 北京 100049;
  • 3. 大连海洋大学水产与生命学院, 大连 116023
基金项目:

国家重点研发计划项目(2020YFA0907400)

摘要: 为探究汞离子对藻细胞的毒性效应,选择雪衣藻(Chlamydomonas nivalis)作为受试生物,测定了不同浓度汞离子处理96 h,雪衣藻的生长、光合色素、叶绿素荧光活性和光合放氧速率等指标。结果显示,随着汞离子浓度升高,雪衣藻单位细胞叶绿素a和叶绿素b含量均显著减少,光系统Ⅱ(PSⅡ)光合活性显著降低,PSⅡ受体侧的电子传递能力相对下降,造成电子积累,导致能量分配失衡,最终抑制了细胞生长;同时,雪衣藻改变其光合能量分配策略来增加细胞对汞胁迫的耐受能力,既满足自身生长和代谢所需能量,又保护和缓解汞对其光合系统的损伤、确保细胞的存活。研究结果确认,叶绿素a、叶绿素b和PSⅡ的电子传递链均是汞离子的作用靶标。本研究有助于深入认识汞对藻细胞的作用机制,为评估汞的生态毒性提供依据。

English Abstract

参考文献 (38)

返回顶部

目录

/

返回文章
返回