汞对雪衣藻光合系统Ⅱ及能量分配的影响
Toxic Effects of Mercury on Photosynthetic System Ⅱ and Energy Allocation in Chlamydomonas nivalis
-
摘要: 为探究汞离子对藻细胞的毒性效应,选择雪衣藻(Chlamydomonas nivalis)作为受试生物,测定了不同浓度汞离子处理96 h,雪衣藻的生长、光合色素、叶绿素荧光活性和光合放氧速率等指标。结果显示,随着汞离子浓度升高,雪衣藻单位细胞叶绿素a和叶绿素b含量均显著减少,光系统Ⅱ(PSⅡ)光合活性显著降低,PSⅡ受体侧的电子传递能力相对下降,造成电子积累,导致能量分配失衡,最终抑制了细胞生长;同时,雪衣藻改变其光合能量分配策略来增加细胞对汞胁迫的耐受能力,既满足自身生长和代谢所需能量,又保护和缓解汞对其光合系统的损伤、确保细胞的存活。研究结果确认,叶绿素a、叶绿素b和PSⅡ的电子传递链均是汞离子的作用靶标。本研究有助于深入认识汞对藻细胞的作用机制,为评估汞的生态毒性提供依据。Abstract: In order to investigate the toxic effects of heavy metal mercury on algae cells, Chlamydomonas nivalis was selected as the test organism, parameters of growth, chlorophyll a, chlorophyll b, chlorophyll fluorescence activity and oxygen release rate were measured at different concentrations of mercury. The results showed that chlorophyll a and chlorophyll b were significantly reduced with the increase of mercury concentration, the photosynthetic activity of photosystem Ⅱ (PSⅡ) was significantly decreased, and the electron transport capacity of the receptor side of PSⅡ was reduced, resulting in electron accumulation and imbalance of energy distribution, and finally inhibiting the growth of algal cells. At the same time, photosynthetic energy allocation strategies were changed to increase cell’s tolerance to mercury stress, which not only met the energy required for growth and metabolism, but also protected and alleviated the damage of mercury to the photosynthetic system, and ensured the survival of algal cells. The results indicated that chlorophyll a, chlorophyll b, and the electron transport chains of PSⅡ were the targets of mercury. This study contributed a deep insight into the toxic mechanism of mercury on algal cells and provides a basis for assessing the ecotoxicity of mercury.
-
Key words:
- mercury /
- Chlamydomonas nivalis /
- PSⅡ /
- toxic effect
-
-
董佳, 常军军, 陈金全. 土壤汞污染修复技术研究进展[J]. 环境科学导刊, 2019, 38(S2):92-96 Dong J, Chang J J, Chen J Q. Research progress on remediation techniques for mercury-contaminated soils[J]. Environmental Science Survey, 2019, 38(S2):92-96(in Chinese)
Feng X B, Li P, Fu X W, et al. Mercury pollution in China:Implications on the implementation of the Minamata Convention[J]. Environmental Science Processes & Impacts, 2022, 24(5):634-648 段志斌, 王济, 安吉平, 等. 汞矿山废弃地土壤汞污染研究[J]. 环境科学与管理, 2016, 41(11):41-44 Duan Z B, Wang J, An J P, et al. Review on mercury pollution of soil in mining wasteland[J]. Environmental Science and Management, 2016, 41(11):41-44(in Chinese)
陈嘉龙. 汞污染的危害与防范技术[J]. 中国高新区, 2017(23):177Chen J L. Harm of mercury pollution and its prevention technology[J]. Science & Technology Industry Parks, 2017(23 ):177(in Chinese)
王利, 王全辉. 发达国家和地区汞污染防治对我国的启示[J]. 环境保护与循环经济, 2019, 39(10):74-78 Wang L, Wang Q H. Enlightenment of prevention and control of mercury pollution in developed countries and regions to China[J]. Environmental Protection and Circular Economy, 2019, 39(10):74-78(in Chinese)
Jinadasa B K K K, Jayasinghe G D T M, Pohl P, et al. Mitigating the impact of mercury contaminants in fish and other seafood-A review[J]. Marine Pollution Bulletin, 2021, 171:112710 Mao Y Q, Liu W G, Yang X D, et al. Syntrichia caninervis adapt to mercury stress by altering submicrostructure and physiological properties in the Gurbantünggüt Desert[J]. Scientific Reports, 2022, 12(1):11717 Ibrahim M, Nawaz S, Iqbal K, et al. Plant-derived smoke solution alleviates cellular oxidative stress caused by arsenic and mercury by modulating the cellular antioxidative defense system in wheat[J]. Plants, 2022, 11(10):1379 Puzon J J M, Rivero G C, Serrano J E. Antioxidant responses in the leaves of mercury-treated Eichhornia crassipes (Mart.) Solms.[J]. Environmental Monitoring and Assessment, 2014, 186(10):6889-6901 Rai L C, Singh A K, Mallick N. Studies on photosynthesis, the associated electron transport system and some physiological variables of Chlorella vulgaris under heavy metal stress[J]. Journal of Plant Physiology, 1991, 137(4):419-424 Murthy S, Mohanty P. Mercury ions inhibit photosynthetic electron transport at multiple sites in the cyanobacterium Synechococcus 6301[J]. Journal of Biosciences, 1993, 18(3):355-360 Deng C N, Zhang D Y, Pan X L, et al. Toxic effects of mercury on PSⅠ and PSⅡ activities, membrane potential and transthylakoid proton gradient in Microsorium pteropus[J]. Journal of Photochemistry and Photobiology B, Biology, 2013, 127:1-7 El-Sheekh M. Inhibition of the photosynthetic electron transport in the unicellular green alga Chlorella kessleri by mercury at multiple sites[J]. Cytobios-cambridge, 1999, 1:25-38 Williams W E, Gorton H L, Vogelmann T C. Surface gas-exchange processes of snow algae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(2):562-566 吕娜. 雪衣藻响应和适应环境胁迫分子调节的多组学研究[D]. 广州:华南理工大学, 2014:159-161Lv N. Molecular regulation of snow alga Chlamydomonas nivalis in response to stress conditions using multi-omics study[D]. Guangzhou:South China University of Technology, 2014:159 -161(in Chinese)
耿予欢, 魏东, 李国基, 等. 极地雪衣藻的研究进展[J]. 天然产物研究与开发, 2007, 19(1):175-179 Geng Y H, Wei D, Li G J, et al. Research progress on Chlamydomonas nivalis[J]. Natural Product Research and Development, 2007, 19(1):175-179(in Chinese)
Lichtenthaler H, Wellburn A. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Analysis, 1983, 11(5):591-592 Lu N, Wei D, Jiang X L, et al. Fatty acids profiling and biomarker identification in snow alga Chlamydomonas nivalis by NaCl stress using GC/MS and multivariate statistical analysis[J]. Analytical Letters, 2012, 45(10):1172-1183 冉小飞, 刘瑞, 白芳, 等. 微囊藻生长及光合系统Ⅱ对重金属镉的响应[J]. 水生生物学报, 2015, 39(3):627-632 Ran X F, Liu R, Bai F, et al. The response on the growth and photosystem Ⅱ of Microcystis aeruginosa to cadmium, a heavy metal[J]. Acta Hydrobiologica Sinica, 2015, 39(3):627-632(in Chinese)
Strasser R, Tsimilli-Michael M, Srivastava A. Analysis of the Chlorophyll a Fluorescence Transient[M]//Chlorophyll a Fluorescence. Dordrecht:Springer, 2004:321-362 刘璐, 闫浩, 夏文彤, 等. 镉对铜绿微囊藻和斜生栅藻的毒性效应[J]. 中国环境科学, 2014, 34(2):478-484 Liu L, Yan H, Xia W T, et al. Toxic effect of cadmium on Microcysis aeruginosa and Scenedesmus obliquus[J]. China Environmental Science, 2014, 34(2):478-484(in Chinese)
韩宏英. 汞对斜生栅藻(Scenedesmus obliquus)生长发育及光合作用的影响[J]. 环境科学学报, 1984, 4(2):157-164 Han H Y. Effect of mercury on growth, development and photosynthesis of Scenedesmus obliquus[J]. Acta Scientiae Circumstantiae, 1984, 4(2):157-164(in Chinese)
王文欣, 饶本强. 实验室条件下Hg2+胁迫对集球藻生理生化特性的影响[J]. 信阳农业高等专科学校学报, 2012, 22(3):92-96 , 100Wang W X, Rao B Q. Study on the physiological and biochemical properties of Palmellococcus sp. subjected to Hg2+ stress in laboratory condition[J]. Journal of Xinyang Agricultural College, 2012, 22(3):92-96, 100(in Chinese)
牟文, 熊丽, 胡芹芹, 等. HgCl2对斜生栅藻(Scenedesmus obliquus)生理生化特性的影响[J]. 生态毒理学报, 2009, 4(6):854-859 Mu W, Xiong L, Hu Q Q, et al. Effects of HgCl2 on physiological and biochemical characteristics of Scenedesmus obliquus[J]. Asian Journal of Ecotoxicology, 2009, 4(6):854-859(in Chinese)
Stobart A K, Griffiths W T, Ameen-Bukhari I, et al. The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley[J]. Physiologia Plantarum, 1985, 63(3):293-298 Plekhanov S E, Chemeris Y K. Early toxic effects of zinc, cobalt, and cadmium on photosynthetic activity of the green alga Chlorella pyrenoidosa Chick S-39[J]. Biology Bulletin of the Russian Academy of Sciences, 2003, 30(5):506-511 Strasser R J, Tsimilli-Michael M, Qiang S, et al. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. Biochimica et Biophysica Acta, 2010, 1797(6-7):1313-1326 Strasser B J. Donor side capacity of photosystem Ⅱ probed by chlorophyll a fluorescence transients[J]. Photosynthesis Research, 1997, 52(2):147-155 Xia J R, Li Y J, Zou D H. Effects of salinity stress on PSⅡ in Ulva lactuca as probed by chlorophyll fluorescence measurements[J]. Aquatic Botany, 2004, 80(2):129-137 李明, 潘晓洁, 邹怡, 等. Hg2+胁迫对3种微藻生长和叶绿素荧光特性的影响[J]. 水生态学杂志, 2012, 33(2):96-99 Li M, Pan X J, Zou Y, et al. Effects of Hg2+ exposure on the growth and chlorophyll fluorescence of three microalgal strains[J]. Journal of Hydroecology, 2012, 33(2):96-99(in Chinese)
Marcelle R, Clijsters H, Poucke M, et al. Effects of Stress on Photo-synthesis[M]. The Hague:Martinu Nijhoff, 1983:371-382 Baumann H A, Morrison L, Stengel D B. Metal accumulation and toxicity measured by PAM-Chlorophyll fluorescence in seven species of marine macroalgae[J]. Ecotoxicology and Environmental Safety, 2009, 72(4):1063-1075 邹晓娟. 盐胁迫对淡水螺旋藻的生理效应[D]. 南京:南京农业大学, 2015:45-48Zou X J. The physiological effects of salinity stress on fresh Spirulina platensis[D]. Nanjing:Nanjing Agricultural University, 2015:45 -48(in Chinese)
Platt T, Gallegos C, Harrison W G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton[J]. Publications- Astronomical Society of Japan, 1980, 57(57):341-345 夏建荣, 邹定辉. 利用OJIP叶绿素a荧光评估干出对石莼(Ulva lactuca)光系统Ⅱ的影响[J]. 海洋通报, 2007, 26(4):50-55 Xia J R, Zou D H. Effects of desiccation on PSⅡ performance in Ulva lactuca assessed with OJIP chlorophyll a fluorescence transients[J]. Marine Science Bulletin, 2007, 26(4):50-55(in Chinese)
梁英, 冯力霞, 田传远, 等. 盐胁迫对塔胞藻生长及叶绿素荧光动力学的影响[J]. 中国海洋大学学报(自然科学版), 2006, 36(5):726-732Liang Y, Feng L X, Tian C Y, et al. Effects of salt stress on the growth and chlorophyll fluorescence of Pyramidomonas sp.[J]. Periodical of Ocean University of China, 2006, 36(5):726-732(in Chinese) 贺新宇, 刘黎, 付君珂, 等. 重金属镉对拟柱孢藻(Cylindrospermopsis raciborskii)PSⅡ及能量分配特征的影响效应[J]. 湖泊科学, 2019, 31(6):1612-1622 He X Y, Liu L, Fu J K, et al. Toxic effects and energy distribution characteristics of photosynthetic system Ⅱ (PSⅡ) in Cylindrospermopsis raciborskii exposed to heavy metal cadmium[J]. Journal of Lake Sciences, 2019, 31(6):1612-1622(in Chinese)
许萍萍, 涂晓杰, 成凤凤, 等. 庆大霉素对斜生栅藻生长与光合活性的影响[J]. 环境科学与技术, 2021, 44(8):146-153 Xu P P, Tu X J, Cheng F F, et al. Toxic effects of gentamicin on growth and activity of photosynthetic system Ⅱ of Scenedesmus obliquus[J]. Environmental Science & Technology, 2021, 44(8):146-153(in Chinese)
-

计量
- 文章访问数: 1596
- HTML全文浏览数: 1596
- PDF下载数: 125
- 施引文献: 0