Dalahmeh S, Björnberg E, Elenström A K, et al. Pharmaceutical pollution of water resources in Nakivubo wetlands and Lake Victoria, Kampala, Uganda[J]. Science of the Total Environment, 2020, 710:136347
Mompelat S, Le Bot B, Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water[J]. Environment International, 2009, 35(5):803-814
Gracia-Lor E, Sancho J V, Serrano R, et al. Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia[J]. Chemosphere, 2012, 87(5):453-462
Kreke N, Dietrich D R. Physiological endpoints for potential SSRI interactions in fish[J]. Critical Reviews in Toxicology, 2008, 38(3):215-247
Cipriani A, Furukawa T A, Salanti G, et al. Comparative efficacy and acceptability of 12 new-generation antidepressants:A multiple-treatments meta-analysis[J]. Lancet, 2009, 373(9665):746-758
Pratt L A, Brody D J, Gu Q P. Antidepressant use in persons aged 12 and over:United States, 2005-2008[J]. NCHS Data Brief, 2011(76):1-8
Schultz M M, Furlong E T, Kolpin D W, et al. Antidepressant pharmaceuticals in two U.S. effluent-impacted streams:Occurrence and fate in water and sediment, and selective uptake in fish neural tissue[J]. Environmental Science & Technology, 2010, 44(6):1918-1925
Silva L J G, Lino C M, Meisel L M, et al. Selective serotonin re-uptake inhibitors (SSRIs) in the aquatic environment:An ecopharmacovigilance approach[J]. Science of the Total Environment, 2012, 437:185-195
Gulkowska A, Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Research, 2008, 42(1-2):395-403
Lajeunesse A, Gagnon C, Sauvé S. Determination of basic antidepressants and their N-desmethyl metabolites in raw sewage and wastewater using solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Analytical Chemistry, 2008, 80(14):5325-5333
Schultz M M, Furlong E T. Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS[J]. Analytical Chemistry, 2008, 80(5):1756-1762
Dorelle L S, Da Cuña R H, Rey Vázquez G, et al. The SSRI fluoxetine exhibits mild effects on the reproductive axis in the cichlid fish Cichlasoma dimerus (Teleostei, Cichliformes)[J]. Chemosphere, 2017, 171:370-378
Christensen A M, Markussen B, Baun A, et al. Probabilistic environmental risk characterization of pharmaceuticals in sewage treatment plant discharges[J]. Chemosphere, 2009, 77(3):351-358
Metcalfe C D, Chu S G, Judt C, et al. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed[J]. Environmental Toxicology and Chemistry, 2010, 29(1):79-89
Silva L J G, Pereira A M P T, Meisel L M, et al. Reviewing the serotonin reuptake inhibitors (SSRIs) footprint in the aquatic biota:Uptake, bioaccumulation and ecotoxicology[J]. Environmental Pollution, 2015, 197:127-143
Barbosa M, Inocentes N, Soares A M V M, et al. Synergy effects of fluoxetine and variability in temperature lead to proportionally greater fitness costs in Daphnia:A multigenerational test[J]. Aquatic Toxicology, 2017, 193:268-275
Styrishave B, Halling-Sørensen B, Ingerslev F. Environmental risk assessment of three selective serotonin reuptake inhibitors in the aquatic environment:A case study including a cocktail scenario[J]. Environmental Toxicology and Chemistry, 2011, 30(1):254-261
Lee P N, Callaerts P, De Couet H G, et al. Cephalopod Hox genes and the origin of morphological novelties[J]. Nature, 2003, 424(6952):1061-1065
Baratte S, Bonnaud L. Evidence of early nervous differentiation and early catecholaminergic sensory system during Sepia officinalis embryogenesis[J]. The Journal of Comparative Neurology, 2009, 517(4):539-549
Shigeno S, Sasaki T, Moritaki T, et al. Evolution of the cephalopod head complex by assembly of multiple molluscan body parts:Evidence from Nautilus embryonic development[J]. Journal of Morphology, 2008, 269(1):1-17
Navet S, Andouche A, Baratte S, et al. Shh and Pax6 have unconventional expression patterns in embryonic morphogenesis in Sepia officinalis (Cephalopoda)[J]. Gene Expression Patterns, 2009, 9(7):461-467
Sumpter J P, Donnachie R L, Johnson A C. The apparently very variable potency of the anti-depressant fluoxetine[J]. Aquatic Toxicology, 2014, 151:57-60
Barnes N M, Sharp T. A review of central 5-HT receptors and their function[J]. Neuropharmacology, 1999, 38(8):1083-1152
Messenger J B. Neurotransmitters of cephalopods[J]. Invertebrate Neuroscience, 1996, 2:95-114
Lehr T, Schipp R. Serotonergic regulation of the central heart auricles of Sepia officinalis L. (Mollusca, Cephalopoda)[J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 138(1):69-77
Rosen S C, Weiss K R, Goldstein R S, et al. The role of a modulatory neuron in feeding and satiation in Aplysia:Effects of lesioning of the serotonergic metacerebral cells[J]. The Journal of Neuroscience:The Official Journal of the Society for Neuroscience, 1989, 9(5):1562-1578
MacKey S, Carew T J. Locomotion in Aplysia:Triggering by serotonin and modulation by bag cell extract[J]. The Journal of Neuroscience:The Official Journal of the Society for Neuroscience, 1983, 3(7):1469-1477
Glanzman D L, MacKey S L, Hawkins R D, et al. Depletion of serotonin in the nervous system of Aplysia reduces the behavioral enhancement of gill withdrawal as well as the heterosynaptic facilitation produced by tail shock[J]. The Journal of Neuroscience:The Official Journal of the Society for Neuroscience, 1989, 9(12):4200-4213
Wang Q, He M X. Molecular characterization and analysis of a putative 5-HT receptor involved in reproduction process of the pearl oyster Pinctada fucata[J]. General and Comparative Endocrinology, 2014, 204:71-79
Andrews P L R, Messenger J B, Tansey E M. The chromatic and motor effects of neurotransmitter injection in intact and brain-lesioned octopus[J]. Journal of the Marine Biological Association of the United Kingdom, 1983, 63(2):355-370
Shomrat T, Feinstein N, Klein M, et al. Serotonin is a facilitatory neuromodulator of synaptic transmission and "reinforces" long-term potentiation induction in the vertical lobe of Octopus vulgaris[J]. Neuroscience, 2010, 169(1):52-64
Christensen A M, Markussen B, Baun A, et al. Probabilistic environmental risk characterization of pharmaceuticals in sewage treatment plant discharges[J]. Chemosphere, 2009, 77(3):351-358
Metcalfe C D, Chu S G, Judt C, et al. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed[J]. Environmental Toxicology and Chemistry, 2010, 29(1):79-89
Messenger J B, Nixon M, Ryan K P. Magnesium chloride as an anaesthetic for cephalopods[J]. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology, 1985, 82(1):203-205
Mills K C. Serotonin syndrome[J]. American Family Physician, 1995, 52(5):1475-1482
Cunha V, Rodrigues P, Santos M M, et al. Fluoxetine modulates the transcription of genes involved in serotonin, dopamine and adrenergic signalling in zebrafish embryos[J]. Chemosphere, 2018, 191:954-961
Amador M H B, McDonald M D. Molecular and functional characterization of the Gulf toadfish serotonin transporter SLC6A4[J]. The Journal of Experimental Biology, 2018, 221(Pt 7):jeb170928
Gaworecki K M, Klaine S J. Behavioral and biochemical responses of hybrid striped bass during and after fluoxetine exposure[J]. Aquatic Toxicology, 2008, 88(4):207-213
Franzellitti S, Buratti S, Valbonesi P, et al. The mode of action (MOA) approach reveals interactive effects of environmental pharmaceuticals on Mytilus galloprovincialis[J]. Aquatic Toxicology, 2013, 140-141:249-256
Di Poi C, Darmaillacq A S, Dickel L, et al. Effects of perinatal exposure to waterborne fluoxetine on memory processing in the cuttlefish Sepia officinalis[J]. Aquatic Toxicology, 2013, 132-133:84-91
陈瑜, 张博, 李铁军. 氟西汀和帕罗西汀对斑马鱼脑组织5-HT能神经传导系统的影响[J]. 浙江海洋大学学报(自然科学版), 2019, 38(4 ):295-302Chen Y, Zhang B, Li T J. Effects of SSRIs antidepressants fluoxetine and paroxetine on 5-HTergic neurotransmission system in zebrafish brain tissue[J]. Journal of Zhejiang Ocean University (Natural Science), 2019, 38(4):295-302(in Chinese)
Di Poi C, Darmaillacq A S, Dickel L, et al. Effects of perinatal exposure to waterborne fluoxetine on memory processing in the cuttlefish Sepia officinalis[J]. Aquatic Toxicology, 2013, 132-133:84-91
Katona C, Livingston G. How well do antidepressants work in older people? A systematic review of Number Needed to Treat[J]. Journal of Affective Disorders, 2002, 69(1-3):47-52
Sun Y F, Liang Y F, Jiao Y, et al. Comparative efficacy and acceptability of antidepressant treatment in poststroke depression:A multiple-treatments meta-analysis[J]. BMJ Open, 2017, 7(8):e016499
Geretsegger C, Böhmer F, Ludwig M. Paroxetine in the elderly depressed patient:Randomized comparison with fluoxetine of efficacy, cognitive and behavioural effects[J]. International Clinical Psychopharmacology, 1994, 9(1):25-29
Fava M, Rosenbaum J F, Hoog S L, et al. Fluoxetine versus sertraline and paroxetine in major depression:Tolerability and efficacy in anxious depression[J]. Journal of Affective Disorders, 2000, 59(2):119-126
Fava M, Amsterdam J D, Deltito J A, et al. A double-blind study of paroxetine, fluoxetine, and placebo in outpatients with major depression[J]. Annals of Clinical Psychiatry:Official Journal of the American Academy of Clinical Psychiatrists, 1998, 10(4):145-150
Sharp T, Barnes N M. Central 5-HT receptors and their function; present and future[J]. Neuropharmacology, 2020, 177:108155
Weaver R F著. 郑用琏等译. 分子生物学[M]. 第五版. 北京:科学出版社, 2013:558-579
Jovanovic H, Cerin A, Karlsson P, et al. A PET study of 5-HT1A receptors at different phases of the menstrual cycle in women with premenstrual dysphoria[J]. Psychiatry Research, 2006, 148(2-3):185-193
Vandenberg L N, Colborn T, Hayes T B, et al. Hormones and endocrine-disrupting chemicals:Low-dose effects and nonmonotonic dose responses[J]. Endocrine Reviews, 2012, 33(3):378-455
Franzellitti S, Buratti S, Valbonesi P, et al. The mode of action (MOA) approach reveals interactive effects of environmental pharmaceuticals on Mytilus galloprovincialis[J]. Aquatic Toxicology, 2013, 140-141:249-256
Guler Y, Ford A T. Anti-depressants make amphipods see the light[J]. Aquatic Toxicology, 2010, 99(3):397-404
Schloss P, Williams D C. The serotonin transporter:A primary target for antidepressant drugs[J]. Journal of Psychopharmacology, 1998, 12(2):115-121
Lazzara R, Blázquez M, Porte C, et al. Low environmental levels of fluoxetine induce spawning and changes in endogenous estradiol levels in the zebra mussel Dreissena polymorpha[J]. Aquatic Toxicology, 2012, 106-107:123-130
Meredith-Williams M, Carter L J, Fussell R, et al. Uptake and depuration of pharmaceuticals in aquatic invertebrates[J]. Environmental Pollution, 2012, 165:250-258
Brodin T, Piovano S, Fick J, et al. Ecological effects of pharmaceuticals in aquatic systems-Impacts through behavioural alterations[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2014, 369(1656):20130580
Campos B, Rivetti C, Kress T, et al. Depressing antidepressant:Fluoxetine affects serotonin neurons causing adverse reproductive responses in Daphnia magna[J]. Environmental Science & Technology, 2016, 50(11):6000-6007
Valenti T W, Gould G G, Berninger J P, et al. Human therapeutic plasma levels of the selective serotonin reuptake inhibitor (SSRI) sertraline decrease serotonin reuptake transporter binding and shelter-seeking behavior in adult male fathead minnows[J]. Environmental Science & Technology, 2012, 46(4):2427-2435
Bidel F, Di Poi C, Imarazene B, et al. Pre-hatching fluoxetine-induced neurochemical, neurodevelopmental, and immunological changes in newly hatched cuttlefish[J]. Environmental Science and Pollution Research International, 2016, 23(6):5030-5045
Melnyk-Lamont N, Best C, Gesto M, et al. The antidepressant venlafaxine disrupts brain monoamine levels and neuroendocrine responses to stress in rainbow trout[J]. Environmental Science & Technology, 2014, 48(22):13434-13442
Heyland A, Bastien T, Halliwushka K. Transgenerational reproductive effects of two serotonin reuptake inhibitors after acute exposure in Daphnia magna embryos[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2020, 238:108875