呋虫胺在水培草莓植株中的吸收及转运特征

董欣越, 邱志豪, 魏朝俊, 高凡, 郭家选. 呋虫胺在水培草莓植株中的吸收及转运特征[J]. 生态毒理学报, 2023, 18(3): 410-417. doi: 10.7524/AJE.1673-5897.20220928001
引用本文: 董欣越, 邱志豪, 魏朝俊, 高凡, 郭家选. 呋虫胺在水培草莓植株中的吸收及转运特征[J]. 生态毒理学报, 2023, 18(3): 410-417. doi: 10.7524/AJE.1673-5897.20220928001
Dong Xinyue, Qiu Zhihao, Wei Chaojun, Gao Fan, Guo Jiaxuan. Uptake and Transport of Dinotefuran in Hydroponic Strawberry Plants[J]. Asian journal of ecotoxicology, 2023, 18(3): 410-417. doi: 10.7524/AJE.1673-5897.20220928001
Citation: Dong Xinyue, Qiu Zhihao, Wei Chaojun, Gao Fan, Guo Jiaxuan. Uptake and Transport of Dinotefuran in Hydroponic Strawberry Plants[J]. Asian journal of ecotoxicology, 2023, 18(3): 410-417. doi: 10.7524/AJE.1673-5897.20220928001

呋虫胺在水培草莓植株中的吸收及转运特征

    作者简介: 董欣越(1998—),女,硕士研究生,研究方向为生态毒理学,E-mail:1773896330@qq.com
    通讯作者: 高凡, E-mail: gaofan@bua.edu.cn 郭家选, E-mail: guojiaxuangjx@163.com
  • 基金项目:

    国家自然科学基金资助项目(32272648,32072516);北京市自然科学基金-市教委联合资助项目(KZ202010020028)

  • 中图分类号: X171.5

Uptake and Transport of Dinotefuran in Hydroponic Strawberry Plants

    Corresponding authors: Gao Fan, gaofan@bua.edu.cn ;  Guo Jiaxuan, guojiaxuangjx@163.com
  • Fund Project:
  • 摘要: 农药残留已经引起了人们对作物污染的日益关注。本研究将草莓在含有20 mg·L-1呋虫胺(dinotefuran, DIN)的水培液中持续暴露240 h,探究了呋虫胺在草莓植物中的吸收转运规律。研究结果表明,无苗有药对照溶液中呋虫胺的残留量10 d后降低了5.14%,处理组溶液中残留量降幅达19.2%;草莓植株可以从水培液中吸收呋虫胺并向茎叶转运,试验处理168 h后达到吸收稳定状态,呋虫胺在叶部富集程度约为根部的2.1倍;草莓植株各器官从水培液中富集呋虫胺的能力大小为叶>根>茎;草莓中呋虫胺从根到茎的转运因子(TF)约为0.28~0.51,从茎到叶的TF约为1.18~4.74;表明草莓中呋虫胺更易从茎转运到叶;随着暴露时间的增加,单株草莓根部呋虫胺占比不断减少,叶部占比不断增加。上述结果表明,呋虫胺被草莓根部吸收后,易向上运输富集在草莓叶片中。
  • 加载中
  • 李田田, 郑珊珊, 王晶, 等. 新烟碱类农药的污染现状及转化行为研究进展[J]. 生态毒理学报, 2018, 13(4):9-21

    Li T T, Zheng S S, Wang J, et al. A review on occurrence and transformation behaviors of neonicotinoid pesticides[J]. Asian Journal of Ecotoxicology, 2018, 13(4):9-21(in Chinese)

    Bonmatin J M, Giorio C, Girolami V, et al. Environmental fate and exposure; neonicotinoids and fipronil[J]. Environmental Science and Pollution Research International, 2015, 22(1):35-67
    刘纪松, 胡存中, 陆凡, 等. 呋虫胺在土壤中的降解及移动性研究[J]. 生态环境学报, 2015, 24(6):1063-1068

    Liu J S, Hu C Z, Lu F, et al. Studies on the degradation and mobility of dinotefuran in soil[J]. Ecology and Environmental Sciences, 2015, 24(6):1063-1068(in Chinese)

    柳新菊, 吴声敢, 安雪花, 等. 呋虫胺对环境生物的急性毒性与安全性评价[J]. 浙江农业科学, 2020, 61(6):1130-1133

    Liu X J, Wu S G, An X H, et al. Acute toxicity and safety of dinotefuran to environmental organisms[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(6):1130-1133(in Chinese)

    Chen Z L, Yao X M, Dong F S, et al. Ecological toxicity reduction of dinotefuran to honeybee:New perspective from an enantiomeric level[J]. Environment International, 2019, 130:104854
    Pan X, Wang Z J, Chen C, et al. Research on the distribution of neonicotinoid and fipronil pollution in the Yangtze River by high-performance liquid chromatography[J]. Analytical Methods:Advancing Methods and Applications, 2020, 12(46):5581-5590
    Thompson D A, Lehmler H J, Kolpin D W, et al. A critical review on the potential impacts of neonicotinoid insecticide use:Current knowledge of environmental fate, toxicity, and implications for human health[J]. Environmental Science Processes & Impacts, 2020, 22(6):1315-1346
    彭敏, 陈武瑛, 陈武荣, 等. 呋虫胺及其代谢物在甘蓝和土壤中的消解规律[J]. 农药, 2018, 57(2):124-126

    Peng M, Chen W Y, Chen W R, et al. Degradation dynamics of dinotefuran and its metabolites in cabbage and soil[J]. Agrochemicals, 2018, 57(2):124-126(in Chinese)

    Ueyama J, Harada K H, Koizumi A, et al. Temporal levels of urinary neonicotinoid and dialkylphosphate concentrations in Japanese women between 1994 and 2011[J]. Environmental Science & Technology, 2015, 49(24):14522-14528
    Stamm M D, Heng-Moss T M, Baxendale F P, et al. Uptake and translocation of imidacloprid, clothianidin and flupyradifurone in seed-treated soybeans[J]. Pest Management Science, 2016, 72(6):1099-1109
    Li Y, Long L, Yan H Q, et al. Comparison of uptake, translocation and accumulation of several neonicotinoids in komatsuna (Brassica rapa var. perviridis) from contaminated soils[J]. Chemosphere, 2018, 200:603-611
    Su Y H, Zhu Y G. Bioconcentration of atrazine and chlorophenols into roots and shoots of rice seedlings[J]. Environmental Pollution, 2006, 139(1):32-39
    Alsayeda H, Pascal-Lorber S, Nallanthigal C, et al. Transfer of the insecticide[14C] imidacloprid from soil to tomato plants[J]. Environmental Chemistry Letters, 2008, 6(4):229-234
    Ge J, Cui K, Yan H Q, et al. Uptake and translocation of imidacloprid, thiamethoxam and difenoconazole in rice plants[J]. Environmental Pollution, 2017, 226:479-485
    Liu H P, Tang X Y, Xu X M, et al. Potential for phytoremediation of neonicotinoids by nine wetland plants[J]. Chemosphere, 2021, 283:131083
    Lee K Y, Strand S E, Doty S L. Phytoremediation of chlorpyrifos by Populus and Salix[J]. International Journal of Phytoremediation, 2012, 14(1):48-61
    Romeh A A. Evaluation of the phytoremediation potential of three plant species for azoxystrobin-contaminated soil[J]. International Journal of Environmental Science and Technology, 2015, 12(11):3509-3518
    Dodgen L K, Ueda A, Wu X Q, et al. Effect of transpiration on plant accumulation and translocation of PPCP/EDCs[J]. Environmental Pollution, 2015, 198:144-153
    金晓庆. 保护地草莓主要虫害及防治对策[J]. 河北果树, 2022(2):55-56Jin X Q. Main pests of strawberry in protected field and their control countermeasures[J]. Hebei Fruits, 2022

    (2):55-56(in Chinese)

    蔡庆生. 植物生理学实验[M]. 北京:中国农业大学出版社, 2013:7-10
    Ge J, Lu M X, Wang D L, et al. Dissipation and distribution of chlorpyrifos in selected vegetables through foliage and root uptake[J]. Chemosphere, 2016, 144:201-206
    Ju C, Dong S X, Zhang H C, et al. Subcellular distribution governing accumulation and translocation of pesticides in wheat (Triticum aestivum L.)[J]. Chemosphere, 2020, 248:126024
    Li H, Sheng G Y, Sheng W T, et al. Uptake of trifluralin and lindane from water by ryegrass[J]. Chemosphere, 2002, 48(3):335-341
    Sun H W, Xu J, Yang S H, et al. Plant uptake of aldicarb from contaminated soil and its enhanced degradation in the rhizosphere[J]. Chemosphere, 2004, 54(4):569-574
    Volpe V, Marani M, Albertson J D, et al. Root controls on water redistribution and carbon uptake in the soil-plant system under current and future climate[J]. Advances in Water Resources, 2013, 60:110-120
    Lin H, Tao S, Zuo Q, et al. Uptake of polycyclic aromatic hydrocarbons by maize plants[J]. Environmental Pollution, 2007, 148(2):614-619
    Cui H, Schröder P. Uptake, translocation and possible biodegradation of the antidiabetic agent metformin by hydroponically grown Typha latifolia[J]. Journal of Hazardous Materials, 2016, 308:355-361
    刘倩宇, 李远播, 董丰收, 等. 吡虫啉在生菜中的吸收迁移及转化行为[J]. 植物保护, 2022, 48(2):63-68

    Liu Q Y, Li Y B, Dong F S, et al. Uptake, translocation and transformation behavior of imidacloprid in lettuce[J]. Plant Protection, 2022, 48(2):63-68(in Chinese)

    杨丽璇. 水培叶菜类蔬菜对吡虫啉的吸收、转运及累积规律研究[D]. 南宁:广西大学, 2017:21-22Yang L X. Difference of uptake, distribution and accumulation of imidacloprid in several vegetables growth in water[D]. Nanning:Guangxi University, 2017:21

    -22(in Chinese)

    Liu T T, Li T T, Zhang L Y, et al. Exogenous salicylic acid alleviates the accumulation of pesticides and mitigates pesticide-induced oxidative stress in cucumber plants (Cucumis sativus L.)[J]. Ecotoxicology and Environmental Safety, 2021, 208:111654
    Fu D Q, Teng Y, Shen Y Y, et al. Dissipation of polycyclic aromatic hydrocarbons and microbial activity in a field soil planted with perennial ryegrass[J]. Frontiers of Environmental Science & Engineering, 2012, 6(3):330-335
    Lin Q Q, Chen S Y, Chao Y Q, et al. Carboxylesterase-involved metabolism of di-n-butyl phthalate in pumpkin (Cucurbita moschata) seedlings[J]. Environmental Pollution, 2017, 220(Pt A):421-430
    García-Valcárcel A I, Loureiro I, Escorial C, et al. Uptake of azoles by lamb's lettuce (Valerianella locusta L.) grown in hydroponic conditions[J]. Ecotoxicology and Environmental Safety, 2016, 124:138-146
    Sun J Q, Wu X Q, Gan J. Uptake and metabolism of phthalate esters by edible plants[J]. Environmental Science & Technology, 2015, 49(14):8471-8478
  • 加载中
计量
  • 文章访问数:  2142
  • HTML全文浏览数:  2142
  • PDF下载数:  117
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-09-28
董欣越, 邱志豪, 魏朝俊, 高凡, 郭家选. 呋虫胺在水培草莓植株中的吸收及转运特征[J]. 生态毒理学报, 2023, 18(3): 410-417. doi: 10.7524/AJE.1673-5897.20220928001
引用本文: 董欣越, 邱志豪, 魏朝俊, 高凡, 郭家选. 呋虫胺在水培草莓植株中的吸收及转运特征[J]. 生态毒理学报, 2023, 18(3): 410-417. doi: 10.7524/AJE.1673-5897.20220928001
Dong Xinyue, Qiu Zhihao, Wei Chaojun, Gao Fan, Guo Jiaxuan. Uptake and Transport of Dinotefuran in Hydroponic Strawberry Plants[J]. Asian journal of ecotoxicology, 2023, 18(3): 410-417. doi: 10.7524/AJE.1673-5897.20220928001
Citation: Dong Xinyue, Qiu Zhihao, Wei Chaojun, Gao Fan, Guo Jiaxuan. Uptake and Transport of Dinotefuran in Hydroponic Strawberry Plants[J]. Asian journal of ecotoxicology, 2023, 18(3): 410-417. doi: 10.7524/AJE.1673-5897.20220928001

呋虫胺在水培草莓植株中的吸收及转运特征

    通讯作者: 高凡, E-mail: gaofan@bua.edu.cn ;  郭家选, E-mail: guojiaxuangjx@163.com
    作者简介: 董欣越(1998—),女,硕士研究生,研究方向为生态毒理学,E-mail:1773896330@qq.com
  • 农业农村部华北都市农业重点实验室/北京农学院资源与环境系, 北京 102206
基金项目:

国家自然科学基金资助项目(32272648,32072516);北京市自然科学基金-市教委联合资助项目(KZ202010020028)

摘要: 农药残留已经引起了人们对作物污染的日益关注。本研究将草莓在含有20 mg·L-1呋虫胺(dinotefuran, DIN)的水培液中持续暴露240 h,探究了呋虫胺在草莓植物中的吸收转运规律。研究结果表明,无苗有药对照溶液中呋虫胺的残留量10 d后降低了5.14%,处理组溶液中残留量降幅达19.2%;草莓植株可以从水培液中吸收呋虫胺并向茎叶转运,试验处理168 h后达到吸收稳定状态,呋虫胺在叶部富集程度约为根部的2.1倍;草莓植株各器官从水培液中富集呋虫胺的能力大小为叶>根>茎;草莓中呋虫胺从根到茎的转运因子(TF)约为0.28~0.51,从茎到叶的TF约为1.18~4.74;表明草莓中呋虫胺更易从茎转运到叶;随着暴露时间的增加,单株草莓根部呋虫胺占比不断减少,叶部占比不断增加。上述结果表明,呋虫胺被草莓根部吸收后,易向上运输富集在草莓叶片中。

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回