氯化镉对斑马鱼幼鱼视网膜发育的影响
Effects of Cadmium Chloride on Retinal Development in Larval Zebrafish
-
摘要: 镉(cadmium, Cd)可引起斑马鱼眼部毒性效应和行为异常。目前,Cd导致斑马鱼的视网膜发育缺陷机制仍不明确。研究急性镉暴露对斑马鱼视网膜发育的影响。以斑马鱼作为模式生物,将6 hpf(hours post fertilization, hpf)的斑马鱼胚胎暴露于0(对照)、0.2、0.4、0.8、1.6 mg·L-1氯化镉中,观察120 hpf斑马鱼幼鱼的生长状况,并统计胚胎存活率、孵化率和畸形率。后续将斑马鱼胚胎分别暴露于0(对照)、0.8 mg·L-1氯化镉、0.8 mg·L-1氯化镉与0.4 mg·L-1 N-乙酰半胱氨酸(NAC)混合物及0.4 mg·L-1 NAC,观察120 hpf斑马鱼幼鱼生长发育情况和检测氧化应激水平,镜下观察视网膜组织石蜡切片,了解视网膜结构变化;通过运动行为学实验,探讨对视神经的影响;采用qRT-PCR方法检测视网膜发育相关基因,揭示Cd对斑马鱼幼鱼视网膜的发育毒性及分子机制。斑马鱼胚胎的存活率、孵化率在0.8 mg·L-1氯化镉的暴露下开始显著下降(P<0.01),畸形率显著提高(P<0.01)。0.8 mg·L-1氯化镉与0.4 mg·L-1 NAC联合暴露后,幼鱼存活率和孵化率显著提高(P<0.05),畸形率显著下降(P<0.05)。与对照组相比,0.8 mg·L-1氯化镉暴露组斑马鱼幼鱼的眼长与身长比(7.35±0.58)%显著下降(P<0.05),视网膜分层被破坏,对光敏感性降低,活动能力改变,视网膜发育基因opn1sw1、vsx1、brn3b、pax6表达水平显著下调(P<0.05)。与对照组相比,0.8 mg·L-1氯化镉暴露组120 hpf斑马鱼幼鱼体内活性氧(ROS)含量和丙二醛(MDA)含量显著性升高(P<0.05),超氧化物歧化酶(SOD)活性显著下降(P<0.05);与0.8 mg·L-1氯化镉暴露组相比,0.8 mg·L-1氯化镉与0.4 mg·L-1 NAC联合暴露的谷胱甘肽S-转移酶(GST)含量显著升高(P<0.01)。Cd暴露可影响斑马鱼幼鱼及胚胎的氧化应激、神经发育等,并通过降低视网膜发育相关基因的表达水平干扰斑马鱼幼鱼视网膜发育,进一步造成斑马鱼幼鱼的视觉、运动等功能缺陷。Abstract: Cadmium (Cd) exposure may induce ocular toxicity and behavioral abnormalities in zebrafish. However, the mechanism of Cd-induced retinal developmental defects in zebrafish remains unclear. To access the impact of acute cadmium exposure on retinal development in zebrafish. Using zebrafish as a model organism, zebrafish embryos of 6 hours post fertilization (hpf) were exposed to cadmium chloride at different concentrations (0, 0.2, 0.4, 0.8, 1.6 mg·L-1) for 120 h. The growth status of juvenile fish, and the embryo survival rate, hatching rate and deformity rate were evaluated. Subsequently, cadmium chloride (0.8 mg·L-1) and N-acetylcysteine (NAC) (0.4 mg·L-1) were administered individually or combined to zebrafish embryos from 6 hpf until 120 hpf. Movement behavior experiment was tested. We also detected the level of growth, oxidative stress, the change of retinal structure and retinal development-related genes. The rates of survival and hatching of zebrafish embryos were significant reduced (P<0.01), while the rate of deformity was significant increased (P<0.01) in 0.8 mg·L-1 cadmium chloride group. Incontrast, the rates of survival and hatching of zebrafish embryos were increased and the rate of deformity was decreased in combined group. We observed a higher ratio of eye/body length, destroyed retinal delamination, lower sensitivity to light and lower activity ability of zebrafish embryos in cadmium chloride group than control. In addition, the expression levels of retinal development genes opn1sw1, vsx1, brn3b, and pax6 were significantly down-regulated (P<0.05) in zebrafish embryos after exposure to cadmium chloride. Similarly, the level of reactive oxygen species (ROS) and malondialdehyde (MDA) increased while deformity rate decreased significantly in 120 hpf zebrafish larvae after exposure to 0.8 mg·L-1 cadmium chloride. Compared to individual exposure to cadmium chloride, the content of glutathione S-transferase (GST) was significantly increased (P<0.01) in 120 hpf zebrafish larvae after exposure combined with NAC. Zebrafish embryos exposure to cadmium may increase the level of oxidative stress and decrease the expression levels of retinal development-related genes, which affect the retinal developmentand induce the functional defects such as vision and movement in zebrafish larvae.
-
Key words:
- cadmium /
- Danio rerio /
- retina /
- visual behavior /
- histopathology /
- molecular mechanisms
-
-
Campoy-Diaz A D, Escobar-Correas S, Canizo B V, et al. A freshwater symbiosis as sensitive bioindicator of cadmium[J]. Environmental Science and Pollution Research International, 2020, 27(3):2580-2587 Zhou Y F, Yang Y Y, Liu G H, et al. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments:The roles of water pH, lead ions, natural organic matter and phenanthrene[J]. Water Research, 2020, 184:116209 Yi Y J, Zhang S H. The relationships between fish heavy metal concentrations and fish size in the upper and middle reach of Yangtze River[J]. Procedia Environmental Sciences, 2012, 13:1699-1707 李争显, 李伟, Lei Jiajun, 等. 常见金属元素对人体的作用及危害[J]. 中国材料进展, 2020, 39(12):934-944 Li Z X, Li W, Lei J J, et al. Effect and hazard of common metal elements on human body[J]. Materials China, 2020, 39(12):934-944(in Chinese)
Chen H, Chen K, Qiu X C, et al. The reproductive toxicity and potential mechanisms of combined exposure to dibutyl phthalate and diisobutyl phthalate in male zebrafish (Danio rerio)[J]. Chemosphere, 2020, 258:127238 Awoyemi O M, Subbiah S, Velazquez A, et al. Nitrate-N-mediated toxicological responses of Scenedesmus acutus and Daphnia pulex to cadmium, arsenic and their binary mixture (Cd/Asmix) at environmentally relevant concentrations[J]. Journal of Hazardous Materials, 2020, 400:123189 Zhang Y, Li Z Y, Kholodkevich S, et al. Effects of cadmium on intestinal histology and microbiota in freshwater crayfish (Procambarus clarkii)[J]. Chemosphere, 2020, 242:125105 Capriello T, Grimaldi M C, Cofone R, et al. Effects of aluminium and cadmium on hatching and swimming ability in developing zebrafish[J]. Chemosphere, 2019, 222:243-249 Tang S, Doering J A, Sun J X, et al. Linking oxidative stress and magnitude of compensatory responses with life-stage specific differences in sensitivity of white sturgeon (Acipenser transmontanus) to copper or cadmium[J]. Environmental Science & Technology, 2016, 50(17):9717-9726 Chen J Q, Xu Y M, Han Q, et al. Immunosuppression, oxidative stress, and glycometabolism disorder caused by cadmium in common carp (Cyprinus carpio L.):Application of transcriptome analysis in risk assessment of environmental contaminant cadmium[J]. Journal of Hazardous Materials, 2019, 366:386-394 Akinyemi A J, Oboh G, Fadaka A O, et al. Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats[J]. Neurotoxicology, 2017, 62:75-79 Stenkamp D L. Neurogenesis in the fish retina[J]. International Review of Cytology, 2007, 259:173-224 Naïja A, Kestemont P, Chénais B, et al. Effects of Hg sublethal exposure in the brain of peacock blennies Salariapavo:Molecular, physiological and histopathological analysis[J]. Chemosphere, 2018, 193:1094-1104 Boyd P, Hyde D R. Iron contributes to photoreceptor degeneration and Müller glia proliferation in the zebrafish light-treated retina[J]. Experimental Eye Research, 2022, 216:108947 Mela M, Cambier S, Mesmer-Dudons N, et al. Methylmercury localization in Danio rerio retina after trophic and subchronic exposure:A basis for neurotoxicology[J]. Neurotoxicology, 2010, 31(5):448-453 Chen J F, Chen Y H, Liu W, et al. Developmental lead acetate exposure induces embryonic toxicity and memory deficit in adult zebrafish[J]. Neurotoxicology and Teratology, 2012, 34(6):581-586 Sakai C, Ijaz S, Hoffman E J. Zebrafish models of neurodevelopmental disorders:Past, present, and future[J]. Frontiers in Molecular Neuroscience, 2018, 11:294 Avanesov A, Malicki J. Analysis of the retina in the zebrafish model[J]. Methods in Cell Biology, 2010, 100:153-204 d'Amora M, Giordani S. The utility of zebrafish as a model for screening developmental neurotoxicity[J]. Frontiers in Neuroscience, 2018, 12:976 Amini R, Rocha-Martins M, Norden C. Neuronal migration and lamination in the vertebrate retina[J]. Frontiers in Neuroscience, 2017, 11:742 Chen X, Qiu T T, Xiao P, et al. Retinal toxicity of isoflucypram to zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2022, 243:106073 Xiao P, Li W H, Lu J F, et al. Effects of embryonic exposure to bixafen on zebrafish (Danio rerio) retinal development[J]. Ecotoxicology and Environmental Safety, 2021, 228:113007 DeCarvalho A C, Cappendijk S L T, Fadool J M. Developmental expression of the POU domain transcription factor Brn-3b (Pou4f2) in the lateral line and visual system of zebrafish[J]. Developmental Dynamics:An Official Publication of the American Association of Anatomists, 2004, 229(4):869-876 Handa O, Naito Y, Yoshikawa T. Redox biology and gastric carcinogenesis:The role of Helicobacter pylori[J]. Redox Report:Communications in Free Radical Research, 2011, 16(1):1-7 Zhang T, Zhou X Y, Ma X F, et al. Mechanisms of cadmium-caused eye hypoplasia and hypopigmentation in zebrafish embryos[J]. Aquatic Toxicology, 2015, 167:68-76 Jin Y X, Liu Z Z, Liu F, et al. Embryonic exposure to cadmium (Ⅱ) and chromium (Ⅵ) induce behavioral alterations, oxidative stress and immunotoxicity in zebrafish (Danio rerio)[J]. Neurotoxicology and Teratology, 2015, 48:9-17 鲁疆, 王占洋, 袁玉婷, 等. 氯化镉对斑马鱼胚胎的发育毒性[J]. 生态毒理学报, 2013, 8(3):381-388 Lu J, Wang Z Y, Yuan Y T, et al. Developmental toxicity of cadmium chloride to zebrafish embryo[J]. Asian Journal of Ecotoxicology, 2013, 8(3):381-388(in Chinese)
Bilotta J, Saszik S. The zebrafish as a model visual system[J]. International Journal of Developmental Neuroscience:The Official Journal of the International Society for Developmental Neuroscience, 2001, 19(7):621-629 Copper J E, Budgeon L R, Foutz C A, et al. Comparative analysis of fixation and embedding techniques for optimized histological preparation of zebrafish[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2018, 208:38-46 Yu Y J, Hou Y B, Dang Y, et al. Exposure of adult zebrafish (Danio rerio) to tetrabromobisphenol A causes neurotoxicity in larval offspring, an adverse transgenerational effect[J]. Journal of Hazardous Materials, 2021, 414:125408 Araujo G F, Soares L O S, Junior S F S, et al. Oxidative stress and metal homeostasis alterations in Danio rerio (zebrafish) under single and combined carbamazepine, acetamiprid and cadmium exposures[J]. Aquatic Toxicology, 2022, 245:106122 Chow E S, Hui M N, Cheng C W, et al. Cadmium affects retinogenesis during zebrafish embryonic development[J]. Toxicology and Applied Pharmacology, 2009, 235(1):68-76 张灵, 刘秘, 王雯雯, 等. 三氯生单独暴露对斑马鱼幼鱼眼部的毒性研究[J]. 生命科学研究, 2019, 23(4):290-296 Zhang L, Liu M, Wang W W, et al. Toxic effect of triclosan exposure on the eyes of zebrafish larvae[J]. Life Science Research, 2019, 23(4):290-296(in Chinese)
Zhao G, Sun H J, Zhang T, et al. Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis[J]. Cell Communication and Signaling, 2020, 18(1):45 Xia Y, Zhu J W, Xu Y J, et al. Effects of ecologically relevant concentrations of cadmium on locomotor activity and microbiota in zebrafish[J]. Chemosphere, 2020, 257:127220 Shi Q P, Wang Z Y, Chen L G, et al. Optical toxicity of triphenyl phosphate in zebrafish larvae[J]. Aquatic Toxicology, 2019, 210:139-147 Qian L, Qi S Z, Wang Z, et al. Environmentally relevant concentrations of boscalid exposure affects the neurobehavioral response of zebrafish by disrupting visual and nervous systems[J]. Journal of Hazardous Materials, 2021, 404(Pt A):124083 Tian J J, Hu J, Liu D, et al. Cadmium chloride-induced transgenerational neurotoxicity in zebrafish development[J]. Environmental Toxicology and Pharmacology, 2021, 81:103545 Gu J, Zhang J Y, Chen Y Y, et al. Neurobehavioral effects of bisphenol S exposure in early life stages of zebrafish larvae (Danio rerio)[J]. Chemosphere, 2019, 217:629-635 Hsu T, Huang K M, Tsai H T, et al. Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2(MSH2) and MSH6 in zebrafish (Danio rerio) embryos[J]. Aquatic Toxicology, 2013, 126:9-16 Gu Q, Rodgers J, Robinson B, et al. N-acetylcysteine prevents verapamil-induced cardiotoxicity with no effect on the noradrenergic arch-associated neurons in zebrafish[J]. Food and Chemical Toxicology, 2020, 144:111559 Zhang X, Hong Q, Yang L, et al. PCB1254 exposure contributes to the abnormalities of optomotor responses and influence of the photoreceptor cell development in zebrafish larvae[J]. Ecotoxicology and Environmental Safety, 2015, 118:133-138 Chow R L, Snow B, Novak J, et al. Vsx1, a rapidly evolving paired-like homeobox gene expressed in cone bipolar cells[J]. Mechanisms of Development, 2001, 109(2):315-322 Nornes S, Clarkson M, Mikkola I, et al. Zebrafish contains two pax6 genes involved in eye development[J]. Mechanisms of Development, 1998, 77(2):185-196 黄惠琳, 刘华钢, 蒙怡, 等. 氯化两面针碱对斑马鱼胚胎SOD和MDA的影响[J]. 毒理学杂志, 2011, 25(4):243-245 Huang H L, Liu H G, Meng Y, et al. The effect of nitidine chloride on SOD activity and MDA content of zebrafish embryo[J]. Journal of Toxicology, 2011, 25(4):243-245(in Chinese)
杨晨, 耿月攀, 田然. 哺乳动物谷胱甘肽转移酶研究进展[J]. 南京师大学报(自然科学版), 2021, 44(1):91-98Yang C, Geng Y P, Tian R. Advance in mammalian glutathione transferase research[J]. Journal of Nanjing Normal University (Natural Science Edition), 2021, 44(1):91-98(in Chinese) 彭秋雨, 高举, 陈敏. N-乙酰半胱氨酸在血液系统疾病治疗中的研究进展[J]. 中国药房, 2021, 32(1):115-120 Peng Q Y, Gao J, Chen M. Research progress of N- acetylcysteine in the treatment of hematological diseases[J]. China Pharmacy, 2021, 32(1):115-120(in Chinese)
-

计量
- 文章访问数: 1393
- HTML全文浏览数: 1393
- PDF下载数: 120
- 施引文献: 0