-
目前全球染料年产量超过700×104 t,染料品种已经超过10×104余种,常用染料有2 000种以上,而且每年人工合成的新型染料也层出不穷,各地的江河湖泊都受到不同程度的污染[1-2]。而且这些染料大多为酚类化合物、苯类化合物[3],其结构复杂、难以生物降解、对生态环境危害极大[4-5]。因此,处理有机废水中的染料大分子是当前必须解决的热点问题。目前常用于有机废水治理的方法主要有物理吸附法、化学法、生物处理法、膜分离技术等[6-7]。但是这些方法往往对系统条件要求苛刻,成本和能耗高,需要二次维护[8-9]。与上述处理方法相比,光催化技术具有操作简单、成本低廉、循环性好等优点[10-11]。
g-C3N4作为一种通过π-π共轭形成的可见光响应型催化剂,通过范德华力作用堆砌形成二维层状结构,与石墨烯的层状结构类似,其具有优异的光稳定性和热稳定性[12]、良好的生物相容性、合适的能带结构以及优异的光电转化性能,常用于光催化分解水制氢[13-15]、二氧化碳还原[16-17]、有机污染物降解[18-19]等。然而,g-C3N4也有不可避免的缺陷,如比表面积小导致对有机污染物的吸附性能差[20];光生电子-空穴对复合率高导致催化活性差等,严重限制了其对有机污染物的降解性能[21-22]。目前,有研究者通过制备三维多孔氮化碳改善了上述问题。LIU等[23]以三聚氰酸-三聚氰胺超分子和离子液体分别做为前体和模板,合成了三维多孔超薄g-C3N4纳米片。其中,3D多孔结构增大了g-C3N4的比表面积,暴露了更多的活性位点,超薄结构的纳米片降低了载流子传输距离,抑制了载流子的复合率。WANG等[24]在软模板P-123存在下对超分子前驱体进行水热处理,制备出由空心气泡组成的三维g-C3N4催化剂。硬模板法[25]在控制造孔孔径大小和孔径分布上具有明显优势,但脱除模板的过程中要用到强酸或强碱进行处理,容易使氮化碳的—N—、═NH和—NH2官能团发生质子化作用,最终破坏其缩聚结构,且模板脱除过程产生的废酸、废碱过多[26-27]。软模板法可选择大多数表面活性剂以及低沸点分子充当模板,但是实验过程中需要调控的因素很多,生成的孔不如硬模板法整齐,并且表面活性剂可能不随高温完全分解从而残留于样品表面[28]。与上述方法相比,NH4Cl作为气体模板辅助造孔,无需在后续过程中去除模板,实验操作步骤更加简便,且不容易改变g-C3N4的基本结构。此外,以NH4Cl为模板辅助制备多孔g-C3N4不仅有利于对污染物的吸附[29],还可在煅烧前驱体的过程中促进CN−的生成,进而抑制光生电子空穴对的复合,提高对有机污染物的降解性能。
本研究采用气体模板NH4Cl辅助制备出多孔g-C3N4,通过XRD、FT-IR、UV-vis和XPS等表征研究样品的化学结构和晶相结构,通过SEM和TEM表征样品的表面形貌和微观结构,通过光催化降解水中RhB评价样品的光催化性能和循环性能,利用荧光光谱仪、瞬态荧光光谱仪和电化学工作站研究光生电子与空穴的复合和迁移状况,最后通过自由基捕获实验和高分辨质谱仪测试分析其光催化降解机理,旨在为开发新型光催化剂和建立RhB的降解方法提供参考。
基于气体模板法制备的多孔g-C3N4对罗丹明B的降解效果及机理
Degradation effect and mechanism of rhodamine B by porous g-C3N4 prepared by gas template method
-
摘要: 为了处理废水中的染料大分子有机污染物,以NH4Cl为气体模板,通过高温煅烧法制备多孔氮化碳(PCN),使用XRD、SEM、TEM、FT-IR、UV-vis、XPS和BET等分析方法对催化剂进行了表征,并以水中罗丹明B(RhB)的降解率为评价标准,考察了样品的光催化性能和活性物种。结果表明:PCN在不改变氮化碳(g-C3N4)基本结构的基础上显著提高其光吸收能力和光催化活性;与g-C3N4相比,当前驱体中NH4Cl添加量为55%时,样品的比表面积由13.878 m2·g−1增至28.548 m2·g−1,TOC去除率由85.7%增至95.8%,降解速率和光电流密度分别是g-C3N4的2倍和2.5倍;在光催化降解RhB的过程中,·O2−是起主要作用的活性物种。多孔结构有利于提高比表面积以吸附更多的有机物大分子,并且为光催化反应提供更多的活性位点。煅烧过程中氰基的生成减少了光生电子和空穴的复合,载流子的寿命变长,二者的共同作用使PCN的光催化性能大幅提升。本研究成果可为开发新型光催化剂和建立RhB的降解方法提供参考。Abstract: In order to treat the dye macromolecular organic pollutants in wastewater, porous g-C3N4 (PCN) was prepared by the high temperature calcination method using NH4Cl as gas template. The photocatalysts were characterized by XRD, SEM, TEM, FT-IR, UV-vis, XPS, BET and other analytical methods. Photocatalytic performance and active species were investigated based on the degradation rate of rhodamine B (RhB) in water. The results showed that PCN could greatly enhance light absorption ability and photocatalytic activity of g-C3N4 without changing its basic structure. Compared with g-C3N4, when the addition amount of NH4Cl in precursor was 55%, the specific surface area of PCN sample increased from 13.878 m2·g−1 to 28.548 m2·g−1, TOC removal rate increased from 85.7% to 95.8%, degradation rate and photocurrent density were 2 times, 2.5 times of g-C3N4, respectively. In the process of photocatalytic degradation of RhB, ·O2− was the main active species. Porous structure was beneficial to increase specific surface area, adsorb more organic macromolecules and provide more active sites for photocatalytic reactions. The generation of cyano groups during calcination process reduced recombination of photogenerated electrons and holes, and extended the lifetime of carrier. Their combined effect could greatly improve the photocatalytic performance of PCN. The results of this study can provide a reference for the development of new photocatalysts and the establishment of RhB degradation methods.
-
Key words:
- g-C3N4 /
- gas template /
- porous /
- photocatalytic degradation /
- rhodamine B(RhB)
-
-
[1] WANG T, SUN D L, ZHUANG Q, et al. China's drinking water sanitation from 2007 to 2018: A systematic review[J]. Science of the Total Environment, 2020, 757: 143923-143933. [2] MENON P, SINGH T A, PANI N, et al. Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater[J]. Chemosphere, 2021, 269: 128739-128750. doi: 10.1016/j.chemosphere.2020.128739 [3] SHI Y F, LI S N, WANG L Y, et al. Compositional characteristics of dissolved organic matter in pharmaceutical wastewater effluent during ozonation[J]. Science of the Total Environment, 2021, 778: 146278-146287. doi: 10.1016/j.scitotenv.2021.146278 [4] LI J X, XU Y Q, DING Z Z, et al. Photocatalytic selective oxidation of benzene to phenol in water over layered double hydroxide: A thermodynamic and kinetic perspective[J]. Chemical Engineering Journal, 2020, 388: 124248. doi: 10.1016/j.cej.2020.124248 [5] YASEEN D A, SCHOLZ M. Treatment of synthetic textile waste water containing dye mixtures with microcosms[J]. Environmental Science and Pollution Research, 2018, 25(2): 1980-1997. doi: 10.1007/s11356-017-0633-7 [6] 姚悦, 李桂菊, 马万瑶. 电絮凝法深度处理制革废水的实验研究[J]. 天津科技大学学报, 2019, 34(6): 66-70. doi: 10.13364/j.issn.1672-6510.20180002 [7] AKARSU C, DEVEECI E U, GONEN C, et al. Treatment of slaughterhouse wastewater by electrocoagulation and electroflotation as a combined process: Process optimization through response surface methodology[J]. Environmental Science and Pollution Research, 2021, 28: 34473-34488. doi: 10.1007/s11356-021-12855-4 [8] JIANG T J, LUO C W, XIE C, et al. Synthesis of oxygen-doped graphitic carbon nitride and its application for the degradation of organic pollutants via dark Fenton-like reactions[J]. RSC Advances, 2020, 10: 32906-32918. doi: 10.1039/D0RA05202G [9] WANG W L, ZHAO J M, SUN Y Y, et al. Facile synthesis of g-C3N4 with various morphologies for application in electrochemical detection[J]. RSC Advances, 2019, 9: 7737-7746. doi: 10.1039/C8RA10166C [10] DONG C, QU Z P, JIANG X, et al. Tuning oxygen vacancy concentration of MnO2 through metal doping for improved toluene oxidation[J]. Journal of Hazardous Materials, 2020, 391: 122181. doi: 10.1016/j.jhazmat.2020.122181 [11] HUANG H R, ZHANG Z J, GUO S K, et al. Interfacial charge-transfer transitions enhanced photocatalytic activity of TCNAQ/g-C3N4 organic hybrid material[J]. Materials Letters, 2019, 255: 126546. doi: 10.1016/j.matlet.2019.126546 [12] YU Y, YAN W, WANG X F, et al. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4[J]. Advanced Materials, 2018, 30(9): 1705060. doi: 10.1002/adma.201705060 [13] YANG C, ZHANG S S, HUANG Y, et al. Sharply increasing the visible photoreactivity of g-C3N4 by breaking the intralayered hydrogen bonds[J]. Applied Surface Science, 2020, 505: 144654. doi: 10.1016/j.apsusc.2019.144654 [14] LI C M, WU H H, DU Y H, et al. Mesoporous 3D/2D NiCoP/g-C3N4 heterostructure with dual Co-N and Ni-N bonding states for boosting photocatalytic H2 production activity and stability[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 12934-12943. [15] LIAO J Z, CUI W, LI J Y, et al. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4[J]. Chemical Engineering Science, 2020, 379: 122282. doi: 10.1016/j.cej.2019.122282 [16] SUN Z X, WANG H Q, WU Z B, et al. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction[J]. Catalysis Today, 2018, 300: 160-172. doi: 10.1016/j.cattod.2017.05.033 [17] LIU M J, WAGEH S, Al-GHAMDI A A, et al. Quenching induced hierarchical 3D porous g-C3N4 with enhanced photocatalytic CO2 reduction activity[J]. Chemical Communications, 2019, 55: 14023-14026. doi: 10.1039/C9CC07647F [18] LI C M, YU S Y, ZHANG X X, et al. Insight into photocatalytic activity, universality and mechanism of copper/chlorine surface dual-doped graphitic carbon nitride for degrading various organic pollutants in water[J]. Journal of Colloid and Interface Science, 2019, 538: 462-473. doi: 10.1016/j.jcis.2018.12.009 [19] LI Y H, GU M L, SHI T, et al. Carbon vacancy in g-C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity[J]. Applied Catalysis B, 2020, 262: 118281. doi: 10.1016/j.apcatb.2019.118281 [20] LIU S H, LIN W X. A simple method to prepare g-C3N4-TiO2/waste zeolites as visible-light responsive photocatalytic coatings for degradation of indoor formaldehyde hazard[J]. Journal of Hazardous Materials, 2019, 368: 468-476. doi: 10.1016/j.jhazmat.2019.01.082 [21] GUO F S, HU B, YANG C, et al. On-Surface polymerization of in-Plane highly ordered carbon nitride nanosheets toward photocatalytic mineralization of mercaptan gas[J]. Advanced Materials, 2021, 33(42): 2101466. doi: 10.1002/adma.202101466 [22] XIAO Y T, TIAN G H, LI W. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis[J]. Journal of the American Chemical Society, 2019, 141(6): 2508-2515. doi: 10.1021/jacs.8b12428 [23] LIU Y P, ZHAO S, WANG Y Y, et al. Controllable fabrication of 3D porous carbon nitride with ultrathin nanosheets templated by ionic liquid for highly efficient water splitting[J]. International Journal of Hydrogen Energy, 2021, 46(49): 25004-25014. doi: 10.1016/j.ijhydene.2021.05.018 [24] WANG X L, LIU Q, YANG Q, et al. Three-dimensional g-C3N4 aggregates of hollow bubbles with high photocatalytic degradation of tetracycline[J]. Carbon, 2018, 136: 103-112. doi: 10.1016/j.carbon.2018.04.059 [25] CHENG J S, HU Z, LI Q, et al. Fabrication of high photoreactive carbon nitride nanosheets by polymerization of amidinourea for hydrogen production[J]. Applied Catalysis B, 2019, 245: 197-206. doi: 10.1016/j.apcatb.2018.12.044 [26] DUAN Y Y, LI X F, LV K, et al. Flower-like g-C3N4 assembly from holy nanosheets with nitrogen vacancies for efficient NO abatement[J]. Applied Surface Science, 2019, 492: 166-176. doi: 10.1016/j.apsusc.2019.06.125 [27] WANG J H, ZAHNG C, SHEN Y F, etal. Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectro chemical activity[J]. Journal of Materials Chemistry A, 2015, 3(9): 5126-5131. doi: 10.1039/C4TA06778A [28] 巩正奇, 闫楚璇, 宣之易, 等. 制备类石墨相氮化碳多孔光催化剂的模板法发展[J]. 工程科学学报, 2021, 43(3): 345-354. [29] GUO Q Y, ZAHNG Y H, ZHANG H S. 3D foam strutted graphene carbon nitride with highly stable optoelectronic properties[J]. Advanced Functional Materials, 2017, 27(42): 1703711. doi: 10.1002/adfm.201703711 [30] 杨锋. CH3NH3PbI3钙钛矿材料的制备及性能研究[D]. 绵阳: 西南科技大学, 2017. [31] ZHOU B, WAQAS M, YANG B, et al. Convenient one-step fabrication and morphology evolution of thin-shelled honeycomb-like structured g-C3N4 to significantly enhance photocatalytic hydrogen evolution[J]. Applied Surface Science, 2020, 506: 145004. doi: 10.1016/j.apsusc.2019.145004 [32] LI F, YUE X Y, ZHOU H P, et al. Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction[J]. Chinese Journal of Catalysis, 2021, 42(9): 1608-1616. doi: 10.1016/S1872-2067(20)63776-7 [33] 宁湘, 武月桃, 王续峰, 等. 石墨相氮化碳/二氧化锡复合材料的制备及光催化性能[J]. 无机化学学报, 2019, 35(12): 2243-2252. doi: 10.11862/CJIC.2019.272 [34] WEI W J, WANG Y B, HUANG Y F, et al. Constructing isotype CN/s-CN heterojunction with enhanced photocatalytic performance[J]. Diamond and Related Materials, 2020, 101: 107616. doi: 10.1016/j.diamond.2019.107616 [35] 陈甜. g-C3N4/活性炭复合材料中g-C3N4光催化活性和活性炭再生性能改善的研究[D]. 太原: 太原理工大学, 2020. [36] 王新哲. 多孔氮化碳制备及可见光催化增强的机制研究[D]. 吉林: 东北电力大学, 2021. [37] 刘华俊, 彭天右, 彭正合, 等. Dy/WO3光催化降解罗丹明B的反应机理[J]. 武汉大学学报, 2007, 53(2): 127-132. [38] HE Q C, ZHOU F, ZHAN S, et al. Enhancement of photocatalytic and photoelectrocatalytic activity of Ag modified Mpg-C3N4 composites[J]. Applied Surface Science, 2017, 391: 423-431. doi: 10.1016/j.apsusc.2016.07.005 [39] YAO C, YANG Y Z, LI L, et al. Elucidating the key role of the cyano (−C≡N) group to construct environmentally friendly fused-ring electron acceptors[J]. The Journal of Physical Chemistry C, 2020, 124(42): 23059-23068. doi: 10.1021/acs.jpcc.0c08022 [40] OU H H, CHEN X R, LIN L H, et al. Biomimetic donor-acceptor motifs in conjugated polymers for promoting exciton splitting and charge separation[J]. Angewandte Chemie International Edition, 2018, 57(28): 8729-8733. doi: 10.1002/anie.201803863