[1] |
WANG T, SUN D L, ZHUANG Q, et al. China's drinking water sanitation from 2007 to 2018: A systematic review[J]. Science of the Total Environment, 2020, 757: 143923-143933.
|
[2] |
MENON P, SINGH T A, PANI N, et al. Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater[J]. Chemosphere, 2021, 269: 128739-128750. doi: 10.1016/j.chemosphere.2020.128739
|
[3] |
SHI Y F, LI S N, WANG L Y, et al. Compositional characteristics of dissolved organic matter in pharmaceutical wastewater effluent during ozonation[J]. Science of the Total Environment, 2021, 778: 146278-146287. doi: 10.1016/j.scitotenv.2021.146278
|
[4] |
LI J X, XU Y Q, DING Z Z, et al. Photocatalytic selective oxidation of benzene to phenol in water over layered double hydroxide: A thermodynamic and kinetic perspective[J]. Chemical Engineering Journal, 2020, 388: 124248. doi: 10.1016/j.cej.2020.124248
|
[5] |
YASEEN D A, SCHOLZ M. Treatment of synthetic textile waste water containing dye mixtures with microcosms[J]. Environmental Science and Pollution Research, 2018, 25(2): 1980-1997. doi: 10.1007/s11356-017-0633-7
|
[6] |
姚悦, 李桂菊, 马万瑶. 电絮凝法深度处理制革废水的实验研究[J]. 天津科技大学学报, 2019, 34(6): 66-70. doi: 10.13364/j.issn.1672-6510.20180002
|
[7] |
AKARSU C, DEVEECI E U, GONEN C, et al. Treatment of slaughterhouse wastewater by electrocoagulation and electroflotation as a combined process: Process optimization through response surface methodology[J]. Environmental Science and Pollution Research, 2021, 28: 34473-34488. doi: 10.1007/s11356-021-12855-4
|
[8] |
JIANG T J, LUO C W, XIE C, et al. Synthesis of oxygen-doped graphitic carbon nitride and its application for the degradation of organic pollutants via dark Fenton-like reactions[J]. RSC Advances, 2020, 10: 32906-32918. doi: 10.1039/D0RA05202G
|
[9] |
WANG W L, ZHAO J M, SUN Y Y, et al. Facile synthesis of g-C3N4 with various morphologies for application in electrochemical detection[J]. RSC Advances, 2019, 9: 7737-7746. doi: 10.1039/C8RA10166C
|
[10] |
DONG C, QU Z P, JIANG X, et al. Tuning oxygen vacancy concentration of MnO2 through metal doping for improved toluene oxidation[J]. Journal of Hazardous Materials, 2020, 391: 122181. doi: 10.1016/j.jhazmat.2020.122181
|
[11] |
HUANG H R, ZHANG Z J, GUO S K, et al. Interfacial charge-transfer transitions enhanced photocatalytic activity of TCNAQ/g-C3N4 organic hybrid material[J]. Materials Letters, 2019, 255: 126546. doi: 10.1016/j.matlet.2019.126546
|
[12] |
YU Y, YAN W, WANG X F, et al. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4[J]. Advanced Materials, 2018, 30(9): 1705060. doi: 10.1002/adma.201705060
|
[13] |
YANG C, ZHANG S S, HUANG Y, et al. Sharply increasing the visible photoreactivity of g-C3N4 by breaking the intralayered hydrogen bonds[J]. Applied Surface Science, 2020, 505: 144654. doi: 10.1016/j.apsusc.2019.144654
|
[14] |
LI C M, WU H H, DU Y H, et al. Mesoporous 3D/2D NiCoP/g-C3N4 heterostructure with dual Co-N and Ni-N bonding states for boosting photocatalytic H2 production activity and stability[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 12934-12943.
|
[15] |
LIAO J Z, CUI W, LI J Y, et al. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4[J]. Chemical Engineering Science, 2020, 379: 122282. doi: 10.1016/j.cej.2019.122282
|
[16] |
SUN Z X, WANG H Q, WU Z B, et al. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction[J]. Catalysis Today, 2018, 300: 160-172. doi: 10.1016/j.cattod.2017.05.033
|
[17] |
LIU M J, WAGEH S, Al-GHAMDI A A, et al. Quenching induced hierarchical 3D porous g-C3N4 with enhanced photocatalytic CO2 reduction activity[J]. Chemical Communications, 2019, 55: 14023-14026. doi: 10.1039/C9CC07647F
|
[18] |
LI C M, YU S Y, ZHANG X X, et al. Insight into photocatalytic activity, universality and mechanism of copper/chlorine surface dual-doped graphitic carbon nitride for degrading various organic pollutants in water[J]. Journal of Colloid and Interface Science, 2019, 538: 462-473. doi: 10.1016/j.jcis.2018.12.009
|
[19] |
LI Y H, GU M L, SHI T, et al. Carbon vacancy in g-C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity[J]. Applied Catalysis B, 2020, 262: 118281. doi: 10.1016/j.apcatb.2019.118281
|
[20] |
LIU S H, LIN W X. A simple method to prepare g-C3N4-TiO2/waste zeolites as visible-light responsive photocatalytic coatings for degradation of indoor formaldehyde hazard[J]. Journal of Hazardous Materials, 2019, 368: 468-476. doi: 10.1016/j.jhazmat.2019.01.082
|
[21] |
GUO F S, HU B, YANG C, et al. On-Surface polymerization of in-Plane highly ordered carbon nitride nanosheets toward photocatalytic mineralization of mercaptan gas[J]. Advanced Materials, 2021, 33(42): 2101466. doi: 10.1002/adma.202101466
|
[22] |
XIAO Y T, TIAN G H, LI W. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis[J]. Journal of the American Chemical Society, 2019, 141(6): 2508-2515. doi: 10.1021/jacs.8b12428
|
[23] |
LIU Y P, ZHAO S, WANG Y Y, et al. Controllable fabrication of 3D porous carbon nitride with ultrathin nanosheets templated by ionic liquid for highly efficient water splitting[J]. International Journal of Hydrogen Energy, 2021, 46(49): 25004-25014. doi: 10.1016/j.ijhydene.2021.05.018
|
[24] |
WANG X L, LIU Q, YANG Q, et al. Three-dimensional g-C3N4 aggregates of hollow bubbles with high photocatalytic degradation of tetracycline[J]. Carbon, 2018, 136: 103-112. doi: 10.1016/j.carbon.2018.04.059
|
[25] |
CHENG J S, HU Z, LI Q, et al. Fabrication of high photoreactive carbon nitride nanosheets by polymerization of amidinourea for hydrogen production[J]. Applied Catalysis B, 2019, 245: 197-206. doi: 10.1016/j.apcatb.2018.12.044
|
[26] |
DUAN Y Y, LI X F, LV K, et al. Flower-like g-C3N4 assembly from holy nanosheets with nitrogen vacancies for efficient NO abatement[J]. Applied Surface Science, 2019, 492: 166-176. doi: 10.1016/j.apsusc.2019.06.125
|
[27] |
WANG J H, ZAHNG C, SHEN Y F, etal. Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectro chemical activity[J]. Journal of Materials Chemistry A, 2015, 3(9): 5126-5131. doi: 10.1039/C4TA06778A
|
[28] |
巩正奇, 闫楚璇, 宣之易, 等. 制备类石墨相氮化碳多孔光催化剂的模板法发展[J]. 工程科学学报, 2021, 43(3): 345-354.
|
[29] |
GUO Q Y, ZAHNG Y H, ZHANG H S. 3D foam strutted graphene carbon nitride with highly stable optoelectronic properties[J]. Advanced Functional Materials, 2017, 27(42): 1703711. doi: 10.1002/adfm.201703711
|
[30] |
杨锋. CH3NH3PbI3钙钛矿材料的制备及性能研究[D]. 绵阳: 西南科技大学, 2017.
|
[31] |
ZHOU B, WAQAS M, YANG B, et al. Convenient one-step fabrication and morphology evolution of thin-shelled honeycomb-like structured g-C3N4 to significantly enhance photocatalytic hydrogen evolution[J]. Applied Surface Science, 2020, 506: 145004. doi: 10.1016/j.apsusc.2019.145004
|
[32] |
LI F, YUE X Y, ZHOU H P, et al. Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction[J]. Chinese Journal of Catalysis, 2021, 42(9): 1608-1616. doi: 10.1016/S1872-2067(20)63776-7
|
[33] |
宁湘, 武月桃, 王续峰, 等. 石墨相氮化碳/二氧化锡复合材料的制备及光催化性能[J]. 无机化学学报, 2019, 35(12): 2243-2252. doi: 10.11862/CJIC.2019.272
|
[34] |
WEI W J, WANG Y B, HUANG Y F, et al. Constructing isotype CN/s-CN heterojunction with enhanced photocatalytic performance[J]. Diamond and Related Materials, 2020, 101: 107616. doi: 10.1016/j.diamond.2019.107616
|
[35] |
陈甜. g-C3N4/活性炭复合材料中g-C3N4光催化活性和活性炭再生性能改善的研究[D]. 太原: 太原理工大学, 2020.
|
[36] |
王新哲. 多孔氮化碳制备及可见光催化增强的机制研究[D]. 吉林: 东北电力大学, 2021.
|
[37] |
刘华俊, 彭天右, 彭正合, 等. Dy/WO3光催化降解罗丹明B的反应机理[J]. 武汉大学学报, 2007, 53(2): 127-132.
|
[38] |
HE Q C, ZHOU F, ZHAN S, et al. Enhancement of photocatalytic and photoelectrocatalytic activity of Ag modified Mpg-C3N4 composites[J]. Applied Surface Science, 2017, 391: 423-431. doi: 10.1016/j.apsusc.2016.07.005
|
[39] |
YAO C, YANG Y Z, LI L, et al. Elucidating the key role of the cyano (−C≡N) group to construct environmentally friendly fused-ring electron acceptors[J]. The Journal of Physical Chemistry C, 2020, 124(42): 23059-23068. doi: 10.1021/acs.jpcc.0c08022
|
[40] |
OU H H, CHEN X R, LIN L H, et al. Biomimetic donor-acceptor motifs in conjugated polymers for promoting exciton splitting and charge separation[J]. Angewandte Chemie International Edition, 2018, 57(28): 8729-8733. doi: 10.1002/anie.201803863
|