

(www)

第 16卷第 10期 2022年 10月 Vol. 16, No.10 Oct. 2022

me (010) 62941074

文章栏目:水污染防治

http://www.cjee.ac.cn

DOI 10.12030/j.cjee.202205036 中图分类号 X703.1 文献标识码 A

王莹莹, 王海花, 马永宁, 等. 基于气体模板法制备的多孔 g-C₃N₄ 对罗丹明 B 的降解效果及机理[J]. 环境工程学报, 2022, 16(10): 3243-3254. [WANG Yingying, WANG Haihua, MA Yongning, et al. Degradation effect and mechanism of rhodamine B by porous g-C₃N₄ prepared by gas template method[J]. Chinese Journal of Environmental Engineering, 2022, 16(10): 3243-3254.]

E-mail: cjee@rcees.ac.cn

基于气体模板法制备的多孔 g-C₃N₄ 对罗丹明 B 的 降解效果及机理

王莹莹1,2,王海花1,2,⊠,马永宁1,2,费贵强1,2,郭明哲3,罗梓轩4,陈腾飞4

1.陕西科技大学化学与化工学院,西安 710021; 2.中国轻工业轻化工助剂重点实验室,西安 710021; 3.陕西交 通控股集团有限公司西安外环分公司,西安 710065; 4.中国石油长庆油田分公司西安长庆化工集团有限公司,西安 710018

摘 要 为了处理废水中的染料大分子有机污染物,以 NH4Cl 为气体模板,通过高温煅烧法制备多孔氮化碳 (PCN),使用 XRD、SEM、TEM、FT-IR、UV-vis、XPS 和 BET 等分析方法对催化剂进行了表征,并以水中罗丹 明 B(RhB)的降解率为评价标准,考察了样品的光催化性能和活性物种。结果表明:PCN 在不改变氮化碳 (g-C₃N₄)基本结构的基础上显著提高其光吸收能力和光催化活性;与 g-C₃N₄相比,当前驱体中 NH₄Cl 添加量为 55% 时,样品的比表面积由 13.878 m²·g⁻¹ 增至 28.548 m²·g⁻¹, TOC 去除率由 85.7% 增至 95.8%,降解速率和光电 流密度分别是 g-C₃N₄ 的 2 倍和 2.5 倍;在光催化降解 RhB 的过程中,·O₂⁻²是起主要作用的活性物种。多孔结构有 利于提高比表面积以吸附更多的有机物大分子,并且为光催化反应提供更多的活性位点。煅烧过程中氰基的生 成减少了光生电子和空穴的复合,载流子的寿命变长,二者的共同作用使 PCN 的光催化性能大幅提升。本研究 成果可为开发新型光催化剂和建立 RhB 的降解方法提供参考。

关键词 g-C₃N₄; 气体模板; 多孔; 光催化降解; 罗丹明 B(RhB)

目前全球染料年产量超过 700×10⁴ t,染料品种已经超过 10×10⁴ 余种,常用染料有 2 000 种以 上,而且每年人工合成的新型染料也层出不穷,各地的江河湖泊都受到不同程度的污染^[1-2]。而且 这些染料大多为酚类化合物、苯类化合物^[3],其结构复杂、难以生物降解、对生态环境危害极 大^[4-5]。因此,处理有机废水中的染料大分子是当前必须解决的热点问题。目前常用于有机废水治 理的方法主要有物理吸附法、化学法、生物处理法、膜分离技术等^[6-7]。但是这些方法往往对系统 条件要求苛刻,成本和能耗高,需要二次维护^[8-9]。与上述处理方法相比,光催化技术具有操作简 单、成本低廉、循环性好等优点^[10-11]。

g-C₃N₄作为一种通过π-π共轭形成的可见光响应型催化剂,通过范德华力作用堆砌形成二维层状结构,与石墨烯的层状结构类似,其具有优异的光稳定性和热稳定性^[12]、良好的生物相容性、合适的能带结构以及优异的光电转化性能,常用于光催化分解水制氢^[13-15]、二氧化碳还原^[16-17]、有

收稿日期: 2022-05-09; 录用日期: 2022-08-10

基金项目: 国家自然科学基金资助项目 (21978164, 22078189);陕西省杰出青年科学基金资助项目 (2021JC-046);陕西省创新支持计划 (2021JZY-001);陕西省重点研发计划 (2020GY-243);陕西省教育厅专项研究基金资助项目 (20JK0535)

第一作者:王莹莹 (1998—),女,硕士研究生,200811074@sust.edu.cn; ⊠通信作者:王海花 (1982—),女,博士,教授, whh@sust.edu.cn

机污染物降解^[18-19]等。然而,g-C₃N₄也有不可避免的缺陷,如比表面积小导致对有机污染物的吸附性能差^[20];光生电子-空穴对复合率高导致催化活性差等,严重限制了其对有机污染物的降解性能^[21-22]。目前,有研究者通过制备三维多孔氮化碳改善了上述问题。LIU等^[23]以三聚氰酸-三聚氰 胺超分子和离子液体分别做为前体和模板,合成了三维多孔超薄 g-C₃N₄纳米片。其中,3D多孔结构增大了 g-C₃N₄的比表面积,暴露了更多的活性位点,超薄结构的纳米片降低了载流子传输距离,抑制了载流子的复合率。WANG等^[24]在软模板 P-123存在下对超分子前驱体进行水热处理,制备出由空心气泡组成的三维 g-C₃N₄ 催化剂。硬模板法^[25]在控制造孔孔径大小和孔径分布上具有明显优势,但脱除模板的过程中要用到强酸或强碱进行处理,容易使氮化碳的—N—、=NH和—NH₂ 官能团发生质子化作用,最终破坏其缩聚结构,且模板脱除过程产生的废酸、废碱过多^[26-27]。软模板法可选择大多数表面活性剂以及低沸点分子充当模板,但是实验过程中需要调控的因素很多,生成的孔不如硬模板法整齐,并且表面活性剂可能不随高温完全分解从而残留于样品表面^[28]。与上述方法相比,NH₄Cl 作为气体模板辅助造孔,无需在后续过程中去除模板,实验操作步骤更加简便,且不容易改变 g-C₃N₄ 的基本结构。此外,以 NH₄Cl 为模板辅助制备多孔 g-C₃N₄ 不仅有利于对污染物的吸附^[29],还可在煅烧前驱体的过程中促进 CN⁻的生成,进而抑制光生电子空穴对的复合,提高对有机污染物的降解性能。

本研究采用气体模板 NH₄Cl 辅助制备出多孔 g-C₃N₄,通过 XRD、FT-IR、UV-vis 和 XPS 等表征 研究样品的化学结构和晶相结构,通过 SEM 和 TEM 表征样品的表面形貌和微观结构,通过光催 化降解水中 RhB 评价样品的光催化性能和循环性能,利用荧光光谱仪、瞬态荧光光谱仪和电化学 工作站研究光生电子与空穴的复合和迁移状况,最后通过自由基捕获实验和高分辨质谱仪测试分 析其光催化降解机理,旨在为开发新型光催化剂和建立 RhB 的降解方法提供参考。

1 材料与方法

1.1 实验原料

实验所用的药品均为分析级试剂,使用前无需纯化。三聚氰胺和 RhB 购自天津科密欧科技有限公司,NH₄Cl 购自上海麦克林生化科技有限公司,对苯醌购自上海麦克林生化科技有限公司, 三乙醇胺购自天津市大茂化学试剂公司,无水乙醇和异丙醇购自天津富宇精细化工有限公司,去 离子水由超纯水仪处理所得。

1.2 实验仪器

马弗炉(KSL-1400X-A1,合肥科晶材料技术有限公司),X射线衍射仪(D2 PHASER,德国 Bruker公司),X射线光电子衍射仪(ESCALAB 250XI,美国 Thermo Fisher Scientific Inc公司),场发 射扫描电镜(SU5000,日本Hitachi公司),透射电子显微镜(FEI Tecnai G2 F20 S-TWIN,美国 FEI 公 司),紫外-可见分光光度计(UV-2600,日本岛津公司),傅里叶红外光谱仪(INVENIO,德国 Bruker公司),BET比表面积测试仪(Autosorb-IQ-II,陕西盖卓电子科技有限公司),荧光光谱仪 (FS5,英国爱丁堡公司),电化学工作站(CHI600E,上海辰华仪器有限公司),氙灯光源(CEL-HXF300-T3,北京中教金源有限公司),总有机碳分析仪(vario TOC cube, Elemental 仪器公司),高 分辨质谱仪(Thermo Scientific Q Exactive,美国 Thermo Scientific 公司)。

1.3 实验方法

1) g-C₃N₄的制备。以三聚氰胺为前驱体,通过高温煅烧法制备 g-C₃N₄。取 1.5 g 三聚氰胺,用 锡箔纸包裹后,置于有盖坩埚中,在马弗炉以 550 ℃ 煅烧 3 h。自然冷却所得黄色即为 g-C₃N₄,研 磨后进行光催化性能测试。

2) 多孔 g-C₃N₄的制备。采用高温煅烧三聚氰胺和 NH₄Cl 混合物的方法制备多孔 g-C₃N₄。将

1.5 g 三聚氰胺分别与相应质量 (0.675、0.75、0.825、0.9、0.975 g)的 NH₄Cl 溶于 50 mL 去离子水 中,磁力搅拌 4 h,放入 70 ℃ 烘箱中,蒸干水分。随后用锡箔纸包裹后,放入有盖的坩埚内,在 马弗炉以 550 ℃ 煅烧 3 h,自然冷却所得黄色固体即为 x%-PCN(x% 表示前驱体中 NH₄Cl 的质量分数),研磨后进行光催化性能测试。

1.4 表征和性能测试

1)各项表征和测试。XRD测试:以Cu Kα为辐射源,扫描范围为2*θ*=5°~80°,扫描速度为2(°)·min⁻¹。FT-IR测试:样品与KBr以1:100质量比混合研磨,压成半透明薄片测样,波数为400~4000 cm⁻¹。SEM测试:取少量样品贴于黑色导电胶上,真空喷金后测样。TEM测试:将样品溶于 无水乙醇,超声混匀后滴在铜网上,装样测试。BET测试:样品以150℃脱气6h。UV-vis测试: 采用紫外-可见分光光度计,扫描波长为200~800 nm。PL测试:以波长为385 nm 的激发光测量样 品波长为390~640 nm 的发射光谱。光电流-阻抗测试:采用三电极体系,0.1g催化剂溶于10 mL 溶 剂(*V_x*:*V*_{无水乙醇}=9:1),超声后取上清液涂膜于 FTO 玻璃上,以此作为工作电极,参比电极为饱和甘 汞电极,铂片电极为对电极,电解液为0.5 mol·L⁻¹的 Na₂SO₄溶液。高分辨质谱:取1.5 mL 降解后 RhB液体,甲醇为溶剂,EIS 为离子源。

2) 催化剂降解性能测试。取 0.1 g 催化剂,加入 100 mL 质量浓度为 30 mg·L⁻¹ 的 RhB 溶液中, 在黑暗环境下磁力搅拌 20 min,以达到吸附-脱附平衡。随后用 300 W 氙灯模拟太阳光照射,每隔 10 min 取 5 mL 溶液,离心后取上清液,用 UV-vis 分光光度计测试吸光度。将使用过后的催化剂用 水和乙醇洗至中性,烘干后按照上述步骤重复 4 次,以考察催化剂的稳定性。

2 结果与讨论

2.1 催化剂表征

1) XRD 分析。由图 1 可以看出,g-C₃N₄ 在 13.5°和 27.5°处有 2 个特征衍射峰,13.5°处 的峰是面内三嗪环之间相互连接的特征峰,对 应 g-C₃N₄ 的 (100) 晶面,27.5°处的峰是环状芳 香物层与层之间的堆积特征峰,对应 g-C₃N₄ 的 (002) 晶面。与 g-C₃N₄相比,PCN 的 2 个特 征峰均未发生明显改变,说明以气体模板法辅 助制备 PCN 没有改变 g-C₃N₄ 的晶相结构。此 外,55%-PCN 与 g-C₃N₄ 相比,27.5°处的峰向 左偏移至 27.16°,根据布拉格公式 (2*dsinθ=nλ*)^[30] 计算 g-C₃N₄ 和 55%-PCN 的晶面层间距,分别

为 0.324 nm 和 0.329 nm,说明层间距变大。这可能是由于,三聚氰胺在高温下团聚脱氨的过程中, NH₄Cl 同时受热分解为 NH₃ 和 HCl 气体,导致生成的 g-C₃N₄ 层与层之间的堆积作用变弱^[31]。以上 分析表明,气体模板的加入可以使 g-C₃N₄ 片层与片层之间分离开来,从而进一步影响样品的性能。

2) 形貌分析。由图 2(a) 和图 2(b) 可以观察到 g-C₃N₄ 整齐的片层堆叠,由图 2(e) 也可以观察到 其表面光滑完整的大块结构。由图 2(c) 可以看出,55%-PCN 的形貌与 g-C₃N₄ 相比发生很大的改 变,大片层破裂为小碎片,并且由图 2(d) 也可以看到样品表面产生很多孔径为 50~100 nm 的介孔。 由图 2(f) 也可以看出孔的生成。

3) FT-IR 分析。如图 3 所示,在 g-C₃N₄的 FT-IR 光谱中,3000~3500 cm⁻¹的宽峰为前驱体中未 聚合的氨基 (—NH₂或=NH) 的伸缩振动峰,1200~1640 cm⁻¹ 对应于三嗪环间 C—N 和 C=N 键的特 征峰,位于 810 cm⁻¹ 附近的吸收峰对应三嗪环的伸缩振动。与 g-C₃N₄相比,PCN 在 1 200~1 600 cm⁻¹ 和 810 cm⁻¹ 处的特征峰没有发生明显的变化,表明以 NH₄Cl 为模板并未破坏 g-C₃N₄的主体结构,在 3 000~3 500 cm⁻¹ 处的吸收峰变宽,可能是 NH₄Cl 分解时的氨基与 g-C₃N₄边缘位置未聚合的氨基或羟基结合,导致吸收范围变宽。值得注意的是,PCN 在 2 173 cm⁻¹ 处出现 1 个明显的吸收峰,此为—C=N 的特征吸收峰^[32]。并且随着前驱体中 NH₄Cl 添加量的增多,峰强度越强,说明改性后的多孔结构有利于氰基的形成,使 g-C₃N₄ 的面内形成更多的孔道结构。

4) UV-vis 表征。如图 4(a) 所示, g-C₃N₄ 在 波长小于 470 nm 处的蓝紫光和紫外光区吸收 较强,可见光区的吸收较弱。55%-PCN 在紫外 光区和可见光区的吸收明显增强。此外,禁带 宽度可利用 UV-vis 光谱数据、按照 Kubelka-Munk 函数由式 (1) 计算获得。

$$\alpha h \nu = A(h\nu - E_g)^{1/2} \tag{1}$$

式中: a为吸光度; h代表普朗克常数; v为频 率; E_g 为禁带宽度; A为常数。以 $(ahv)^2$ 为纵 坐标, hv为横坐标作图,对所得曲线取切线, 切线与横坐标的交点即为 E_g ,即所对应的样品 的禁带宽度^[33]。由图 4(b)可以看出,55%-PCN 的禁带宽度为 2.73 eV,与 g-C₃N₄禁带宽度 (2.78 eV)相似。这说明改性后的 PCN 具有较强 光吸收性能且带隙宽度变化不大。

5) XPS 分析。由图 5(a) 可以看出,g-C₃N₄ 和 55%-PCN 的 C1s、N1s、O1s 峰 均 出 现 在 285、400、520 eV 左右,表明二者的元素组成 一致。在图 5(b) 中,284.8、286.6、288.3 eV 的 3 个峰分别是 g-C₃N₄ 的 C—C 键、C—O 键和 N=C—N 键的特征峰。这表明,以 NH₄CI 为模

(e) g-C₃N₄ TEM
(f) 55%-PCN TEM
图 2 g-C₃N₄、55%-PCN 的 SEM 和 TEM 图

Fig. 2 SEM and TEM images of g-C₃N₄ and 55%-PCN

Fig. 3 FT-IR spectra of $g-C_3N_4$ and PCN

板,只在 g-C₃N₄ 中产生了较多的孔道结构,没有影响到 C 的键合状态。在图 5(c)中,g-C₃N₄和 55%-PCN 在 398.7、399.5、401.1 eV 处的 3 个峰,分别对应三嗪环内 C=N—C 键、环与环之间的 H—N—(C)₃ 键和末端氨基上的 C—N—H 键,表明 N 的键合状态也未受到气体模板的影响。由图 5(d) 可以看出,g-C₃N₄和 55%-PCN 的价带电位分别为+1.14 eV 和+0.88 eV。采用文献中的方法^[34] 计算 出 g-C₃N₄和 55%-PCN 的导带电位,分别为-1.64 eV 和-1.85 eV。这表明多孔结构不仅有利于提高 g-C₃N₄ 的光吸收性能,还使导带上电子的还原电势更负。

Fig. 5 XPS spectra of g-C₃N₄ and 55%-PCN

6) BET 分析。如图 6(a) 所示,二者的曲线趋势为IV 型等温曲线,表明 g-C₃N₄和 55%-PCN 均为 中孔材料。另外,测试结果显示,55%-PCN 的比表面积 (28.548 m²·g⁻¹) 与 g-C₃N₄(13.878 m²·g⁻¹) 相比 有所提高,55%-PCN 的孔体积 (0.143 cm³·g⁻¹) 与 g-C₃N₄(0.046 cm³·g⁻¹) 相比也有所提高。这表明 PCN 的表面性能得到了改善。由图 6(b) 可以看出:g-C₃N₄ 的孔径集中分布于 5 nm 左右;55%-PCN 的孔径分布比较宽泛,增加了 10 nm 左右和 10~80 nm 孔道结构。这表明以 NH₄Cl 为模板可增 加 g-C₃N₄ 的孔道结构,有利于提高催化剂对有机污染物的吸附性能。

2.2 性能分析

1) 光致发光 (PL) 光谱和瞬态荧光光谱分析。PL 峰强度越强表明光生电子空穴对的复合率越高。由图 7(a) 可以看出,55%-PCN 的发射峰强度较 g-C₃N₄ 明显降低,表明光生电子空穴对的复合率受到一定程度的限制,有利于光催化性能的提升。图 7(b) 是 g-C₃N₄和 55%-PCN 的瞬态荧光光谱图。当荧光强度衰减到最大值的 1/e 时所用的时间为荧光寿命,即光生电子的平均寿命,其寿命越长,越有利于光催化性能的提升。可以看出,55%-PCN 的平均寿命为1.42 ns,接近 g-C₃N₄的 7 倍 (0.21 ns),表明 55%-PCN 中载流子具有较长的寿命来参与光催化反应。氰基是一种常见的吸电子基团,可以更好地使 55%-PCN 表面的光生电子和空穴分离^[32],提升载流子的寿命,最终影响其光催化性能。

2) 光电性能。虽然通过 PCN 的制备可以抑制光生电子空穴对的复合,但光生电子-空穴对参与 到光催化反应的数量尚不清楚。采用瞬态光电流强度和电化学阻抗谱研究光生电子的迁移效率和 迁移阻力,结果如图 8 所示。在图 8(a) 中,光电流强度越大,表示催化剂中的激发电子向导电玻 璃表面的迁移效率越高,越有利于光催化性能的提升,PCN-55% 的光电流强度最大,是 g-C₃N₄ 的 2.5 倍,表明其电子迁移效率最高。电化学阻抗谱的圆弧半径越小,电阻越小,电荷转移效率更高 效。由图 8(b) 同样可以看出,55%-PCN 的电子迁移阻力最小,可提高光生电子向催化剂表面的迁 移效率。综合以上分析,55%-PCN 样品中的电子迁移阻力较小,有利于激发电子的迁移。

3) 光催化降解罗丹明 B 性能。在图 9(a) 中, -20~0 min 表示催化剂在黑暗环境下对 RhB 的吸附

Fig. 7 Photoluminescence (PL) spectra and fluorescence lifetime spectra in $g-C_3N_4$ and 55%-PCN

Fig. 9 Comparison of the degradation effects on RhB of $g-C_3N_4$ and PCN

过程,0~50 min 表示光照下光催化降解 RhB 的过程。可以看出,不加催化剂时,RhB 在光照 50 min 后的自去除率只有 7.4%,g-C₃N₄的暗吸附率为 2.8%,而 45%-PCN、50%-PCN、55%-PCN、60%-PCN 和 65%-PCN 的暗吸附率分别为 5.2%、7.7%、8.9%、10.3%、11.5%。这表明,PCN 中的孔道随

气体模板 NH₄Cl 的增加而增多,同时对 RhB 的吸附性能也越强。55%-PCN 在 50 min 内即可将 RhB 完全降解,而在相同时间内 g-C₃N₄ 的降解率只有 50% 左右。

为了更直观地比较样品在光照下降解 RhB 溶液的光催化性能,可根据拟合伪一级动力模型^[35] 计算反应的表观速率常数。光催化降解 RhB 的伪一级动力学速率常数和降解率关系如式 (2) 所示。

$$\ln \frac{C}{C_0} = -kt \tag{2}$$

式中: k为表观速率常数, min⁻¹; C_0 和 C分别为 RhB 的初始质量浓度和光照时间 t 时的质量浓度, mg·L⁻¹。由于 0~40 min 的降解数据更符合伪一级动力学方程, 故选择此范围数据, 根据文献中的方法^[32] 作图。以 ln(C_0/C) 为纵坐标, t为横坐标做图, 斜率为 k, 计算所得的 k 值标记于图 9(b) 中。g-C₃N₄ 的 k 值为 1.23×10⁻² min⁻¹, 55%-PCN 的 k 值最大 (6.07×10⁻² min⁻¹), 是 g-C₃N₄ 的 5 倍。

根据有机碳含量计算 g-C₃N₄和 55%-PCN 降解 RhB 的 TOC 去除率, g-C₃N₄为 85.7%, 55%-PCN 为 95.8%(图 9(c) 和图 9(d)),所以 RhB 有机物大分子基本被全部分解为无机物小分子。55%-PCN 与 g-C₃N₄相比,去除率升高,说明其可以更好地将 RhB 大分子吸附并降解。

2.3 催化剂稳定性分析

以上研究表明,55%-PCN 具有对 RhB 优异的吸附性能和降解性能,但催化剂的稳定性是限制 其能否工业化应用的又一关键指标。由图 10(a)可以看出,55%-PCN 在相同循环时间内重复使用 4次的降解率分别为97.4%、95.4%、93.6%、92.7%,对水中 RhB 的降解率未发生明显变化。由图 10(b) 可以看出,55%-PCN 使用前后的 XRD 图谱出峰位置不变,说明反应前后样品的结构和化学组成也 没有发生改变。以上均表明 55%-PCN 具有稳定的光催化活性。

2.4 光催化机理分析

为了研究 55%-PCN 光催化降解 RhB 过程中的主要物种,分别用三乙醇胺 (TEOA)、苯醌 (BQ) 和异丙醇 (IPA) 作为光催化降解体系中空穴 (h⁺)、超氧自由基 (·O₂⁻)、羟基自由基 (·OH) 的捕获 剂^[36] 来进行实验,结果如图 11 所示。当加入 TEOA 后,降解率未发生明显变化,即 h⁺被捕获后催 化活性变化不大,表明 h⁺不是 RhB 降解的主要活性物种;在降解体系中加入 IPA 后,降解率下降 明显,说明·OH 对 RhB 的降解具有一定的促进作用;当加入 BQ 后,光降解效率明显下降,光催 化活性被抑制的最明显,表明·O₂⁻是 RhB 降解时最主要的活性物种。基于以上分析,在 RhB 降解 时,最主要的活性物种是·O₂⁻,其次是·OH, h⁺的活性可忽略不计。

本研究对降解后 RhB 溶液进行高分辨质谱测试,以探究 55%-PCN 光催化降解 RhB 的具体过程。在图 12(a)中, *m/z*=444 表示 RhB 的阳离子峰; *m/z*=416、388、359、331 表示 RhB 脱去 1、2、

3、4个乙基的分子离子峰; m/z=399表示 RhB脱去1个羧基的离子峰; m/z=302可能是 脱去4个乙基和1个羧基后被1个·OH羟基化 所得产物的离子峰; m/z=319可能是脱去4个 乙基和1个羧基后被2个·OH羟基化获得产物 的离子峰^[37]; 推测其余离子峰也是各个大分子 不断被·OH多次氧化后的产物。由图12(b)可 以看出, m/z>150的各处离子峰强度都有一定 程度上的降低, 而 m/z<150 的各个离子峰强度 明显升高。这说明55%-PCN光催化降解 RhB 的过程是一个随着光照时间的升高, RhB开始

Fig. 12 Mass spectra of photocatalytic degradation on RhB by 55%-PCN

脱乙基和羧基,同时·OH不断进攻苯环使其断裂、氧化,最终经过多次氧化反应生成各个小分子的过程。

基于以上结果,推测 55%-PCN 光催化降解 RhB 的机理如图 13 所示。可以看出 55%-PCN 的价 带主要由 N 原子的 N2p 轨道构成^[32,38]。在光照射下,N 原子上的电子充当电子供体被激发到导带生 成光生 e⁻,价带上留下大量 h⁺(式 (3))。导带上 e⁻的还原电势较 *E*(O₂/·O₂⁻)=-0.046 eV 更负,与水中溶 解的 O₂反应生成·O₂⁻(式 (4)),超氧自由基进一步反应生成过氧氢根 (HOO·)和过氧化氢 (H₂O₂)(式 (5) 和式 (6)),接下来继续又被还原成具有强氧化性的·OH^[32](式 (7))。55%-PCN 的孔结构给 RhB 的降 解反应提供了更多边缘反应位点,RhB 在脱乙基和脱羧基过程中不断与·OH 接触,发生羟基化氧 化反应。另外,氰基是常见的吸电子基团,常被用作电子受体^[39]。当 g-C₃N₄的结构中存在氰基 时,氰基与相邻的 N 原子之间会形成局部分子内供体-受体 (D-A)体系。D-A 体系可以有效转移分 子内的电荷,使光生 e⁻和 h⁺分离开来,从而降低载流子重组率^[40]。故 55%-PCN 中的氰基的引入进 一步给光催化降解 RhB 提供更多的活性位点,最终使 RhB 被氧化为 NH₄⁺、CO₂、H₂O等小分子。

$$PCN + h\nu \to h^+ + e^- \tag{3}$$

$$e^- + O_2 \rightarrow \cdot O_2^- \tag{4}$$

$$\cdot O_2^- + H^+ \to HOO \cdot \tag{5}$$

$$e^- + HOO \to H_2O_2 \tag{6}$$

$$e^- + H_2O_2 \rightarrow OH$$
 (7)

图 13 55%-PCN 光催化降解 RhB 机理

Fig. 13 Mechanism of photocatalytic degradation on RhB by 55%-PCN

3 结论

1) 气体模板 NH₄Cl 的引入可以在不破坏 g-C₃N₄ 基本结构的基础上制备 PCN,表面介孔数量增 多,大大增加其比表面积和孔体积,给后续反应提供更多的活性位点。同时有利于提高吸光性 能,经过测试其可见光吸收范围相比 g-C₃N₄ 变宽。

2) 当前驱体中 NH₄Cl 添加量为 55% 时所制备样品降解性能最佳。 55%-PCN 在 50 min 内对 RhB 的降解率为 98%, 伪一级动力学速率常数为 6.07×10⁻² min⁻¹, 是 g-C₃N₄ 的 5 倍;并且其对 RhB 的 TOC 去除率比 g-C₃N₄高,说明其可以更好地将 RhB 大分子吸附并降解。

3) 自由基捕获实验表明,在 RhB 降解时, ·O₂⁻和·OH 参与了反应,在反应中, ·O₂⁻为最主要的 活性物种。吸电子基团氰基与相邻的 N 原子之间会形成局部分子内 D-A 体系,使光生电子和空穴 更好地分离,增加载流子寿命。55%-PCN 的孔结构以及氰基的引入,均给 RhB 的降解反应提供了 更多反应活性位点,在脱乙基和羧基过程中不断与·OH 发生氧化反应,最终产物为 NH₄⁺、CO₂、 H₂O 等小分子。

参考文献

- [1] WANG T, SUN D L, ZHUANG Q, et al. China's drinking water sanitation from 2007 to 2018: A systematic review[J]. Science of the Total Environment, 2020, 757: 143923-143933.
- [2] MENON P, SINGH T A, PANI N, et al. Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater[J]. Chemosphere, 2021, 269: 128739-128750.
- [3] SHI Y F, LI S N, WANG L Y, et al. Compositional characteristics of dissolved organic matter in pharmaceutical wastewater effluent during ozonation[J]. Science of the Total Environment, 2021, 778: 146278-146287.
- [4] LI J X, XU Y Q, DING Z Z, et al. Photocatalytic selective oxidation of benzene to phenol in water over layered double hydroxide: A thermodynamic and kinetic perspective[J]. Chemical Engineering Journal, 2020, 388: 124248.

- [5] YASEEN D A, SCHOLZ M. Treatment of synthetic textile waste water containing dye mixtures with microcosms[J]. Environmental Science and Pollution Research, 2018, 25(2): 1980-1997.
- [6] 姚悦,李桂菊,马万瑶.电絮凝法深度处理制革废水的实验研究[J].天 津科技大学学报,2019,34(6):66-70.
- [7] AKARSU C, DEVEECI E U, GONEN C, et al. Treatment of slaughterhouse wastewater by electrocoagulation and electroflotation as a combined process: Process optimization through response surface methodology[J]. Environmental Science and Pollution Research, 2021, 28: 34473-34488.
- [8] JIANG T J, LUO C W, XIE C, et al. Synthesis of oxygen-doped graphitic carbon nitride and its application for the degradation of organic pollutants via dark Fenton-like reactions[J]. RSC Advances, 2020, 10: 32906-32918.
- [9] WANG W L, ZHAO J M, SUN Y Y, et al. Facile synthesis of $g-C_3N_4$

with various morphologies for application in electrochemical detection[J]. RSC Advances, 2019, 9: 7737-7746.

- [10] DONG C, QU Z P, JIANG X, et al. Tuning oxygen vacancy concentration of MnO₂ through metal doping for improved toluene oxidation[J]. Journal of Hazardous Materials, 2020, 391: 122181.
- [11] HUANG H R, ZHANG Z J, GUO S K, et al. Interfacial charge-transfer transitions enhanced photocatalytic activity of TCNAQ/g-C₃N₄ organic hybrid material[J]. Materials Letters, 2019, 255: 126546.
- [12] YU Y, YAN W, WANG X F, et al. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C₃N₄[J]. Advanced Materials, 2018, 30(9): 1705060.
- [13] YANG C, ZHANG S S, HUANG Y, et al. Sharply increasing the visible photoreactivity of g-C₃N₄ by breaking the intralayered hydrogen bonds[J]. Applied Surface Science, 2020, 505: 144654.
- [14] LI C M, WU H H, DU Y H, et al. Mesoporous 3D/2D NiCoP/g-C₃N₄ heterostructure with dual Co-N and Ni-N bonding states for boosting photocatalytic H₂ production activity and stability[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 12934-12943.
- [15] LIAO J Z, CUI W, LI J Y, et al. Nitrogen defect structure and NO⁺ intermediate promoted photocatalytic NO removal on H₂ treated g-C₃N₄[J]. Chemical Engineering Science, 2020, 379: 122282.
- [16] SUN Z X, WANG H Q, WU Z B, et al. g-C₃N₄ based composite photocatalysts for photocatalytic CO₂ reduction[J]. Catalysis Today, 2018, 300: 160-172.
- [17] LIU M J, WAGEH S, Al-GHAMDI A A, et al. Quenching induced hierarchical 3D porous g-C₃N₄ with enhanced photocatalytic CO₂ reduction activity[J]. Chemical Communications, 2019, 55: 14023-14026.
- [18] LI C M, YU S Y, ZHANG X X, et al. Insight into photocatalytic activity, universality and mechanism of copper/chlorine surface dualdoped graphitic carbon nitride for degrading various organic pollutants in water[J]. Journal of Colloid and Interface Science, 2019, 538: 462-473.
- [19] LI Y H, GU M L, SHI T, et al. Carbon vacancy in g-C₃N₄ nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity[J]. Applied Catalysis B, 2020, 262: 118281.
- [20] LIU S H, LIN W X. A simple method to prepare g-C₃N₄-TiO₂/waste zeolites as visible-light responsive photocatalytic coatings for degradation of indoor formaldehyde hazard[J]. Journal of Hazardous Materials, 2019, 368: 468-476.
- [21] GUO F S, HU B, YANG C, et al. On-Surface polymerization of in-Plane highly ordered carbon nitride nanosheets toward photocatalytic mineralization of mercaptan gas[J]. Advanced Materials, 2021, 33(42): 2101466.
- [22] XIAO Y T, TIAN G H, LI W. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis[J]. Journal of the American Chemical Society, 2019, 141(6):

2508-2515.

- [23] LIU Y P, ZHAO S, WANG Y Y, et al. Controllable fabrication of 3D porous carbon nitride with ultrathin nanosheets templated by ionic liquid for highly efficient water splitting[J]. International Journal of Hydrogen Energy, 2021, 46(49): 25004-25014.
- [24] WANG X L, LIU Q, YANG Q, et al. Three-dimensional g-C₃N₄ aggregates of hollow bubbles with high photocatalytic degradation of tetracycline[J]. Carbon, 2018, 136: 103-112.
- [25] CHENG J S, HU Z, LI Q, et al. Fabrication of high photoreactive carbon nitride nanosheets by polymerization of amidinourea for hydrogen production[J]. Applied Catalysis B, 2019, 245: 197-206.
- [26] DUAN Y Y, LI X F, LV K, et al. Flower-like g-C₃N₄ assembly from holy nanosheets with nitrogen vacancies for efficient NO abatement[J]. Applied Surface Science, 2019, 492: 166-176.
- [27] WANG J H, ZAHNG C, SHEN Y F, etal. Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectro chemical activity[J]. Journal of Materials Chemistry A, 2015, 3(9): 5126-5131.
- [28] 巩正奇, 闫楚璇, 宣之易, 等. 制备类石墨相氮化碳多孔光催化剂的模 板法发展[J]. 工程科学学报, 2021, 43(3): 345-354.
- [29] GUO Q Y, ZAHNG Y H, ZHANG H S. 3D foam strutted graphene carbon nitride with highly stable optoelectronic properties[J]. Advanced Functional Materials, 2017, 27(42): 1703711.
- [30] 杨锋. CH₃NH₃PbI₃钙钛矿材料的制备及性能研究[D]. 绵阳: 西南科技 大学, 2017.
- [31] ZHOU B, WAQAS M, YANG B, et al. Convenient one-step fabrication and morphology evolution of thin-shelled honeycomb-like structured g-C₃N₄ to significantly enhance photocatalytic hydrogen evolution[J]. Applied Surface Science, 2020, 506: 145004.
- [32] LI F, YUE X Y, ZHOU H P, et al. Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO₂ reduction[J]. Chinese Journal of Catalysis, 2021, 42(9): 1608-1616.
- [33] 宁湘,武月桃,王续峰,等.石墨相氮化碳/二氧化锡复合材料的制备 及光催化性能[J].无机化学学报,2019,35(12):2243-2252.
- [34] WEI W J, WANG Y B, HUANG Y F, et al. Constructing isotype CN/s-CN heterojunction with enhanced photocatalytic performance[J]. Diamond and Related Materials, 2020, 101: 107616.
- [35] 陈甜.g-C₃N₄/活性炭复合材料中g-C₃N₄光催化活性和活性炭再生性 能改善的研究[D].太原:太原理工大学, 2020.
- [36] 王新哲.多孔氮化碳制备及可见光催化增强的机制研究[D]. 吉林: 东 北电力大学, 2021.
- [37] 刘华俊, 彭天右, 彭正合, 等. Dy/WO₃光催化降解罗丹明B的反应机理 [J]. 武汉大学学报, 2007, 53(2): 127-132.
- [38] HE Q C, ZHOU F, ZHAN S, et al. Enhancement of photocatalytic and photoelectrocatalytic activity of Ag modified Mpg-C₃N₄ composites[J]. Applied Surface Science, 2017, 391: 423-431.

[39] YAO C, YANG Y Z, LI L, et al. Elucidating the key role of the cyano (-C≡N) group to construct environmentally friendly fused-ring electron acceptors[J]. The Journal of Physical Chemistry C, 2020, 124(42): 23059-23068.

(责任编辑:郑晓梅,曲娜)

[40] OU H H, CHEN X R, LIN L H, et al. Biomimetic donor-acceptor motifs in conjugated polymers for promoting exciton splitting and charge separation[J]. Angewandte Chemie International Edition, 2018, 57(28): 8729-8733.

Degradation effect and mechanism of rhodamine B by porous g-C₃N₄ prepared by gas template method

WANG Yingying^{1,2}, WANG Haihua^{1,2,*}, MA Yongning^{1,2}, FEI Guiqiang^{1,2}, GUO Mingzhe³, LUO Zixuan⁴, CHEN Tengfei⁴

1. College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; 2. Key Laboratory of Chemical Additives for China National Light Industry, Xi'an 710021, China; 3. Xi'an Outer Ring Branch, Shaanxi Transportation Holding Group Co. Ltd., Xi'an 710065, China; 4. Xi'an Changqing Chemical Group Co. Ltd., Petro China Changqing Oil Field Branch, Xi'an 710018, China

*Corresponding author, E-mail: whh@sust.edu.cn

Abstract In order to treat the dye macromolecular organic pollutants in wastewater, porous $g-C_3N_4$ (PCN) was prepared by the high temperature calcination method using NH₄Cl as gas template. The photocatalysts were characterized by XRD, SEM, TEM, FT-IR, UV-vis, XPS, BET and other analytical methods. Photocatalytic performance and active species were investigated based on the degradation rate of rhodamine B (RhB) in water. The results showed that PCN could greatly enhance light absorption ability and photocatalytic activity of $g-C_3N_4$ without changing its basic structure. Compared with $g-C_3N_4$, when the addition amount of NH₄Cl in precursor was 55%, the specific surface area of PCN sample increased from 13.878 m²·g⁻¹ to 28.548 m²·g⁻¹, TOC removal rate increased from 85.7% to 95.8%, degradation rate and photocurrent density were 2 times, 2.5 times of $g-C_3N_4$, respectively. In the process of photocatalytic degradation of RhB, $\cdot O_2^-$ was the main active species. Porous structure was beneficial to increase specific surface area, adsorb more organic macromolecules and provide more active sites for photocatalytic reactions. The generation of cyano groups during calcination process reduced recombination of photogenerated electrons and holes, and extended the lifetime of carrier. Their combined effect could greatly improve the photocatalytic performance of PCN. The results of this study can provide a reference for the development of new photocatalysts and the establishment of RhB degradation methods.

Keywords g-C₃N₄; gas template; porous; photocatalytic degradation; rhodamine B(RhB)