-
抗生素作为一类新兴的药物和个人护理产品(pharmaceutical and personal care products,PPCPs)[1-2],被广泛用于治疗和预防人体、畜禽和水产品的疾病和细菌性病害。近年来,由于新兴冠状病毒肺炎(corona virus disease 2019,COVID-19)疫情的爆发,世界各地抗生素的使用急剧增加[3],由抗生素类毒物引起的水生环境污染问题也已成为全世界备受关注的问题[4]。
由于抗生素类药物分子结构稳定,被食用后不易被生物体完全吸收,会以代谢活性产物甚至原结构形式排出体外进而释放到环境中[5-6]。此外,未使用或过期的药物以及生产废水的不当处理使更多的抗生素进入自然水系统中,包括饮用水源[7-8]。据估计,2013年共有53 800 t抗生素被释放到中国的河流和水道中[9]。联合国的“2017年前沿报告”指出,水产养殖中75%的抗生素可能会流失到周围环境中[10],这对生态系统和人类健康均存在潜在的威胁[11-12]。因此,对水体中抗生素的去除很有必要。然而,常规水处理工艺对这类痕量污染物去除效果有限[13-14],一些深度处理技术例如膜处理技术、臭氧技术、吸附技术、电化学氧化技术等,在处理抗生素时虽然可以实现一定程度的降解[15],但存在着处理费用高、操作过程复杂、稳定性低、再循环能力差等问题,这也对世界各国抗生素污水的处理提出了新的挑战。
近年来,基于TiO2的光催化技术由于其有效性、低成本、高稳定性和环境友好性被广泛用于光催化降解含抗生素类废水。将TiO2纳米粒子通过水热处理制备得到的钛酸纳米材料(titanate nanomaterials,TNM)通常具有较大的比表面积和精细的纳米级结构,具有良好的去除多种污染物的性能[16]。但是,由于纳米TiO2光催化剂的带隙(Eg)(3.2~3.4 eV)较大,只对波长低于380 nm的紫外光有响应,以及快速的电子-空穴对复合速率,使得TiO2和TNM的可见光响应较弱,从而限制了其在太阳/可见光下的应用[17-18]。因此,开发新兴、高效的催化剂成为近年来研究的热点。研究人员利用将光催化剂与金属和非金属掺杂、设计和构建异质结等方法,合成了大量的TiO2基光催化材料[19],并应用于对水体中各类有机污染物的高效去除。
本研究中通过将铌酸盐作为光反应促进剂掺入钛酸盐中,水热法合成一类新型片状纳米复合材料-铌酸盐/钛酸钠米片(niobate/titanate nanoflakes,Nb-TiNFs),利用 XRD、XPS、FT-IR、SEM、TEM等多种手段对Nb-TiNFs材料进行表征和分析。选取氟喹诺酮类抗生素的代表环丙沙星(ciprofloxacin,CIP)作为目标污染物,探究了Nb-TiNFs在模拟日光下对水中CIP的光催化性能和机理,以期为光催化降解水中新兴有机污染物提供参考。
模拟日光下铌酸盐/钛酸纳米片催化降解水中环丙沙星
Photocatalytic degradation of ciprofloxacin in water by niobate/titanate nanoflakes under simulated solar light
-
摘要: 通过一步水热法制备新型铌酸盐/钛酸纳米片(Niobate/titanate nanoflakes,Nb-TiNFs)复合材料,采用XRD、XPS、FT-IR、SEM、TEM等分析手段对其形貌和结构进行了表征,并探究其在模拟日光下对目标污染物环丙沙星(ciprofloxacin,CIP)的降解性能和内在反应机理。结果表明,Nb-TiNFs可高效、快速光催化降解水中CIP。溶液pH可通过影响静电作用以及羟基自由基的形成而影响CIP的降解,在pH为6时,光催化剂(0.1 g·L−1)对水中CIP(10 mg·L−1)的降解率最大,即180 min内达到96.2%;常规离子Na+和Fe3+对CIP的降解无明显影响,但Ca2+的存在对其产生一定抑制作用。降解过程中,超氧自由基(·O2−)是主要的活性物质,材料内部形成的异质结导致带隙偏移,促进电子转移,抑制电子-空穴对的复合,从而促进了太阳光驱动的光催化活性。Nb-TiNFs合成方法简单、高效、稳定且对环境友好,在光催化去除水中新兴污染物领域具有一定的应用前景。Abstract: Novel Niobate/titanate nanoflakes (Nb-TiNFs) composites were prepared by one-step hydrothermal method, and their morphology and structure were characterized by XRD, XPS, FT-IR, SEM, TEM, etc. Degradation performance and intrinsic reaction mechanism of target pollutant ciprofloxacin (CIP) by Nb-TiNFs composites under simulated sunlight were studied. The results showed that CIP in water could be efficiently and rapidly degraded by Nb-TiNFs through photocatalysis. The solution pH could affect the electrostatic effect and the formation of hydroxyl radicals, as well as CIP degradation. The maximum degradation rate of CIP (10 mg·L−1) occurred at 0.1 g·L−1 Nb-TiNFs (0.1 g·L−1 ) photocatalyst and pH 6, which was 96.2% within 180 min. Co-existing inorganic ions, such as Na+ and Fe3+, had no significant effect on the degradation, but the presence of Ca2+ partially inhibited the CIP removal. Superoxide radicals (·O2−) were the primary reactive oxygen species for CIP photodegradation. The formation of heterojunctions led to the shift of the band gap, the promotion of electron transfer and the suppression of electron-hole pair complexation, thus promoted sunlight-driven photocatalytic activity. The synthesis method of Nb-TiNFs is simple, efficient, stable and environmentally friendly, and it has promising applications in the field of photocatalytic degradation of emerging pollutants in water.
-
Key words:
- niobate/titanate nanoflakes /
- solar-light-driven /
- photocatalysis /
- ciprofloxacin
-
-
[1] LI F, DU P, LIU W, et al. Hydrothermal synthesis of graphene grafted titania/titanate nanosheets for photocatalytic degradation of 4-chlorophenol: solar-light-driven photocatalytic activity and computational chemistry analysis[J]. Chemical Engineering Journal, 2018, 331: 685-694. doi: 10.1016/j.cej.2017.09.036 [2] 伊学农, 方佳男, 高玉琼, 等. 紫外线-氯联合高级氧化体系降解水中的萘普生[J]. 环境工程学报, 2019, 13(05): 1030-1037. doi: 10.12030/j.cjee.201811102 [3] CHEN Z, GUO J, JIANG Y, et al. High concentration and high dose of disinfectants and antibiotics used during the COVID-19 pandemic threaten human health[J]. Environmental Sciences Europe, 2021, 33(1): 11-11. doi: 10.1186/s12302-021-00456-4 [4] BAYAN E M, PUSTOVAYA L E, VOLKOVA M G. Recent advances in TiO2-based materials for photocatalytic degradation of antibiotics in aqueous systems[J]. Environmental Technology & Innovation, 2021, 24: 101822. [5] YANG W, WANG Y. Enhanced electron and mass transfer flow-through cell with C3N4-MoS2 supported on three-dimensional graphene photoanode for the removal of antibiotic and antibacterial potencies in ampicillin wastewater[J]. Applied Catalysis B:Environmental, 2021, 282: 119574. doi: 10.1016/j.apcatb.2020.119574 [6] ZHANG L, WANG W, JIANG D, et al. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies[J]. Nano Research, 2015, 8(3): 821-831. doi: 10.1007/s12274-014-0564-2 [7] TERNES T A. Occurrence of drugs in German sewage treatment plants and rivers[J]. Water research (Oxford), 1998, 32(11): 3245-3260. doi: 10.1016/S0043-1354(98)00099-2 [8] HEBERER T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data[J]. Toxicol Lett, 2002, 131(1-2): 5-17. doi: 10.1016/S0378-4274(02)00041-3 [9] ZHANG Q, YING G, PAN C, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. [10] MCGIADE, JACQUELINE. (2017). Nanomaterials: applying the precautionary principle, in UNEP (2017). Frontiers 2017 emerging issues of environmental concern[J]. United Nations Environment Programme, Nairobi. [11] ZHOU C, LAI C, XU P, et al. In situ grown AgI/Bi12O17Cl2 heterojunction photocatalysts for visible light degradation of sulfamethazine: efficiency, pathway, and mechanism[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4174-4184. [12] YI X, LIN C, ONG E J L, et al. Occurrence and distribution of trace levels of antibiotics in surface waters and soils driven by non-point source pollution and anthropogenic pressure[J]. Chemosphere, 2019, 216: 213-223. doi: 10.1016/j.chemosphere.2018.10.087 [13] KANAKARAJU D, GLASS B D, OELGEMÖLLER M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review[J]. Journal of Environmental Management, 2018, 219: 189-207. [14] ROSMAN N, SALLEH W N W, MOHAMED M A, et al. Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue[J]. Journal of Colloid and Interface Science, 2018, 532: 236-260. doi: 10.1016/j.jcis.2018.07.118 [15] SAMY M, IBRAHIM M G, GAR ALALM M, et al. Effective photocatalytic degradation of sulfamethazine by CNTs/LaVO4 in suspension and dip coating modes[J]. Separation and Purification Technology, 2020, 235: 116138. doi: 10.1016/j.seppur.2019.116138 [16] 郑佩, 秦昉, 白波, 关卫省. TiO 2 @碳纳米管吸附去除盐酸四环素[J]. 环境工程学报, 2015, 9(8): 3615-3624. doi: 10.12030/j.cjee.20150806 [17] JIANG L, YUAN X, ZENG G, et al. In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant[J]. Applied Catalysis B:Environmental, 2018, 227: 376-385. doi: 10.1016/j.apcatb.2018.01.042 [18] CHEN S, HUANG D, ZENG G, et al. In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: Synergism of interfacial coupling and hole-transfer[J]. Chemical Engineering Journal, 2020, 382: 122840. doi: 10.1016/j.cej.2019.122840 [19] DONG H, ZENG G, TANG L, et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures[J]. Water Research, 2015, 79: 128-146. doi: 10.1016/j.watres.2015.04.038 [20] 隋睿, 刘晓娜, 杨改强, 等. 铌酸盐负载钛酸纳米片对水中Pb(Ⅱ)和Cu(Ⅱ)的吸附研究[J]. 太原科技大学学报, 2022, 43(1): 82-87. doi: 10.3969/j.issn.1673-2057.2022.01.015 [21] LIU X, DU P, PAN W, et al. Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction[J]. Applied Catalysis B:Environmental, 2018, 231: 11-22. doi: 10.1016/j.apcatb.2018.02.062 [22] DUAN J, JI H, XU T, et al. Simultaneous adsorption of uranium(VI) and 2-chlorophenol by activated carbon fiber supported/modified titanate nanotubes (TNTs/ACF): Effectiveness and synergistic effects[J]. Chemical Engineering Journal, 2021, 406: 126752. doi: 10.1016/j.cej.2020.126752 [23] 康丽, 刘文, 刘晓娜, 等. 铌酸盐改性钛酸纳米片对水中Cd(Ⅱ)的吸附行为及机制[J]. 环境科学, 2018, 39(7): 3212-3221. doi: 10.13227/j.hjkx.201706108 [24] 闫俊青. 基于TiO2半导体光生载流子分离、可见光范畴拓展策略探究[D]. 南开大学, 2015. [25] MARSHALL M S J, NEWELL D T, PAYNE D J, et al. Atomic and electronic surface structures of dopants in oxides: STM and XPS of Nb- and La-doped SrTiO3(001)[J]. Physical review. B, Condensed matter and materials physics, 2011, 83(3) : 035410: 1-035410: 6. [26] BANKAR B D, RAVI K, SUBRAMANIAN S, et al. Niobium oxide supported on cubic spinel cobalt oxide as an efficient heterogeneous catalyst for the synthesis of imines via dehydrogenative coupling of amines and alcohols[J]. Catalysis Letters, 2022: 1-14. [27] OUYANG W, ZHOU Y, FEI X, et al. Simultaneous removal of NO and dichloromethane (CH2Cl2) over Nb-loaded cerium nanotubes catalyst[J]. Journal of Environmental Sciences, 2022, 111: 175-184. doi: 10.1016/j.jes.2021.03.022 [28] SASAHARA A, TOMITORI M. XPS and STM study of Nb-doped TiO2 (110)-(1×1) surfaces[J]. The Journal of Physical Chemistry C, 2013, 117(34): 17680-17686. doi: 10.1021/jp4057576 [29] XIA T, ZHANG W, MUROWCHICK J B, et al. A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals[J]. Advanced Energy Materials, 2013, 3(11): 1516-1523. doi: 10.1002/aenm.201300294 [30] CHEN X, LIU L, LIU Z, et al. Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation[J]. Scientific Reports, 2013, 3(1): 1510. doi: 10.1038/srep01510 [31] 张文海, 吉庆华, 兰华春, 等. ZnTiO3-TiO2复合光催化剂的制备及光催化降解有机污染物机制分析[J]. 环境科学, 2019, 40(2): 693-700. [32] 赵健慧. MnO2基多界面异质结制备及其可见光催化降解环丙沙星研究[D]. 哈尔滨工业大学, 2019. [33] 刘秀, 王磊, 刘婷婷, 等. 钨酸铋光催化降解萘普生效果及其机理[J]. 环境工程学报, 2020, 14(10): 2643-2653. doi: 10.12030/j.cjee.201911154 [34] SUN S P, HATTON T A, CHUNG T. Hyperbranched polyethyleneimine induced cross-linking of polyamide−imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin[J]. Environmental Science & Technology, 2011, 45(9): 4003-4009. [35] 任学昌, 刘宏飞, 张翠玲, 等. 水体中常见无机阳离子对TiO2薄膜光催化还原Cr(Ⅵ)的影响[J]. 环境工程学报, 2010, 4(2): 288-292. [36] KASHIF N, OUYANG F. Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2[J]. Journal of Environmental Sciences (China), 2009, 21(4): 527-533. doi: 10.1016/S1001-0742(08)62303-7