-
据中国自行车协会统计,2020年中国电动自行车产量达到4 126.1×104辆[1],截至2020年全社会电动自行车保有量接近3×109辆[2]。由于疫情的影响,外卖、快递的延展变得更加广泛,电动自行车需求量呈爆发式增长,其生产过程产生大量工业废水。其中,电泳涂装废水具有组分复杂、水质水量变化大、难降解等特点[3-5],成为高效处理电泳涂装废水的关键。
芬顿法为通过H2O2与Fe2+在酸性条件下生成强氧化能力的·OH,进而降解废水中有机污染物,同时生成的Fe(OH)3可以通过絮凝以沉淀有机物和磷酸盐。因其不会产生二次污染,被广泛应用于工业废水处理。王小晓等[6]采用Fenton-混凝应急处理汽车涂装废水,在pH=3~5、H2O2为1.7 g·L−1、FeSO4·7H2O为1.75 g·L−1时,反应10 min后,COD、TP、SS及各种金属离子均达到一级排放标准。杨晨曦等[7]在处理涂料废水时发现,在pH=2、H2O2投量为理论投加量的1.5倍、n(H2O2/Fe2+)=8时,COD去除率可达60.12%。陈烨等[8]使用Fenton法处理汽车涂装废水时发现,在pH=4、H2O2为2.97 g·L−1、n(H2O2/Fe2+)=3、反应70 min后,COD去除率为71.4%。刘强[9]的研究表明,在H2O2投量为0.6 g·L−1、FeSO4·7H2O投量为0.2 g·L−1、氧化反应60 min后,COD和SS去除率分别为90.0%和98.3%。其他研究者[10-13]采用Fenton方法处理涂装废水,也取得较好的处理效果。但因为不同的生产工艺和原料所产生各废水污染物的组分和浓度不同,以上Fenton处理涂装废水的反应条件和处理效果有差异。因此,针对某种涂装废水,需做小试研究其适宜的Fenton氧化反应条件。因实际涂装废水的水质有波动,研究Fenton氧化涂装废水的反应动力学可指导实际废水处理工程。本研究以某电动自行车生产企业的涂装废水为研究对象,探索了温度、底物对其反应动力学影响的规律,优化了Fenton处理涂装废水的工艺条件,以期为类似涂装废水的处理提供参考.
Fenton降解涂装废水的因素影响及动力学分析
Influencing factors and kinetic analysis of Fenton degradation of painting wastewater
-
摘要: 以江苏某电动自行车制造企业的涂装废水为研究对象,采用单因素和响应面优化Fenton氧化处理的反应条件,分析了其动力学过程。结果表明:在pH=3.21、n(H2O2/Fe2+)=8∶1、m(H2O2/COD)=4.17∶1、氧化反应时间为120 min的条件下,COD和TP的去除率均达到最高,分别为81.32%和98%,其降解过程符合一级反应动力学,室温下降解速率常数k为0.014 2 min−1,活化能为4.76 kJ·mol−1。在pH=3.21、n(H2O2/Fe2+)=8∶1、m(H2O2/COD)=0.78∶1、反应时间120 min的条件下,Fenton半氧化体系对COD去除率可达42.5%左右,处理后废水的B/C比由0.12提高至0.35。综合经济因素,认为Fenton半氧化与生物处理工艺耦合处理实际涂装废水更佳。Abstract: The painting wastewater of an electric bike manufacturing enterprise in Jiangsu was taken as the research object, single factor and response curve tests were conducted to optimize the Fenton oxidation conditions, and the corresponding kinetics of this process was also analyzed. The results show that when pH was 3.21, the molar ratio of H2O2 to Fe2+ was 8∶1 and the mass ratio of H2O2 to COD was 4.17∶1, the removal rates of COD and TP could reach their own highest values of 81.32% and 98% after 120 min Fenton oxidation, respectively. The degradation process accorded with the first-order reaction kinetics, the degradation coefficient k and the activation energy were 0.0142 min−1 and 4.76 kJ·mol−1 at room temperature, respectively. Under the conditions of pH 3.21, n(H2O2/Fe2+) of 8∶1, m(H2O2/COD) of 0.78:1, the Fenton semi-oxidation reaction system could remove about 42.5% of COD within 120 min, and the B/C ratio of the treated wastewater increased from 0.12 to 0.35. Considering the economic factors, it is better to recommend the coupled process of Fenton semi-oxidation and biological treatment to treat the actual painting wastewater.
-
Key words:
- fenton oxidation /
- painting wastewater /
- response surface methodology /
- kinetics
-
表 1 响应面设计因素与水平
Table 1. Factors and levels of response surface design
因素 因素编码 因素水平 pH A −1 0 1 H2O2/(g·L−1) B −1 0 1 FeSO4·7H2O/(g·L−1) C −1 0 1 表 2 响应曲面法实验结果
Table 2. Experimental results of response surface method
实验号 A(pH) B(H2O2 /
(g·L−1))C(FeSO4·7H2O /
(g·L−1))COD去除率/% 1 2 3 4 67.54 2 3 3 3 72.93 3 3 4 4 81.65 4 4 4 3 74.77 5 3 4 4 81.19 6 3 5 5 76.97 7 3 4 4 82.26 8 4 5 4 73.98 9 3 5 3 71.74 10 4 4 5 78.04 11 3 3 5 69.16 12 3 4 4 81.53 13 2 5 4 68.82 14 3 4 4 81.97 15 2 4 5 73.53 16 4 3 4 69.51 17 2 4 3 72.16 表 3 COD去除率的响应面模型方差分析极显著性检验
Table 3. Analysis of variance and extreme significance test of response surface model based on COD removal rate
方差来源 平方和 自由度 均方 F值 P值 显著性 模型 422.83 9 46.98 163.02 0.000 1 显著 A 25.70 1 25.70 89.19 0.000 1 显著 B 19.41 1 19.41 67.34 0.000 1 显著 C 4.65 1 4.65 16.14 0.005 1 显著 AB 2.40 1 2.40 8.34 0.023 4 显著 AC 0.90 1 0.90 3.13 0.120 1 不显著 BC 20.25 1 20.25 70.27 0.000 1 显著 A2 102.23 1 102.23 354.74 0.000 1 显著 B2 197.71 1 197.71 686.04 0.000 1 显著 C2 19.78 1 19.78 68.64 0.000 1 显著 残差 2.02 7 0.29 失拟 1.34 3 0.45 2.65 0.185 3 不显著 纯误差 0.68 4 0.17 总和 424.85 16 表 4 Fenton全氧化与半氧化-生物处理运行费用比较
Table 4. Comparison of operation cost between Fenton alone treatment and Fenton-biological treatment
元·t−1 处理工艺 电费 药剂费 污泥费 合计 Fenton全氧化 0.76 7.04 3.1 11.8 Fenton半氧化-生物处理 1.3 2.1 2 5.7 -
[1] 智勰. 总体平稳稳中有进——2020年中国自行车行业经济运行分析[J]. 中国自行车, 2021(2): 16-21. doi: 10.3969/j.issn.1000-999X.2021.02.004 [2] 周晓东, 熊启奎. 电动自行车领域的行业特点及专利保护策略研究[J]. 新能源科技, 2020(7): 21-25. doi: 10.3969/j.issn.1672-6936.2020.07.017 [3] 王雪宁, 杨晶晶, 周晓吉, 等. 汽车涂装废水处理技术的研究进展[J]. 涂料工业, 2020, 50(8): 64-70. doi: 10.12020/j.issn.0253-4312.2020.8.64 [4] 刘海宁, 马安明. Fenton氧化技术在难降解工业废水中的应用[J]. 中国资源综合利用, 2018, 36(3): 93-95. doi: 10.3969/j.issn.1008-9500.2018.03.033 [5] 傅银银. 汽车制造企业污水处理工艺研究[J]. 环境与发展, 2020, 32(12): 50-51. doi: 10.16647/j.cnki.cn15-1369/X.2020.12.026 [6] 王小晓, 刘志梅, 雷阳明, 等. Fenton-混凝法应急处理汽车涂装废水的研究[J]. 环境工程, 2013, 31(S1): 147-150. [7] 杨晨曦, 卢垟杰, 李娟, 等. 混凝沉降-Fenton氧化-活性污泥组合法处理水性涂料废水研究[J]. 涂料工业, 2021, 51(1): 62-67. doi: 10.12020/j.issn.0253-4312.2021.1.62 [8] 陈烨, 董菲菲, 陆骏, 等. 混凝芬顿法处理汽车涂装有机废水[J]. 材料保护, 2018, 51(9): 126-129. [9] 刘强. 无人值守序批式Fenton工艺处理电泳废水工程设计[J]. 工业水处理, 2014, 34(2): 84-86. doi: 10.3969/j.issn.1005-829X.2014.02.024 [10] LI X, ZHANG W, LAI S, et al. Efficient organic pollutants removal from industrial paint wastewater plant employing Fenton with integration of oxic/hydrolysis acidification/oxic[J]. Chemical Engineering Journal, 2018, 332: 440-448. doi: 10.1016/j.cej.2017.09.008 [11] 于常武, 刘春怡. Fenton法处理全自动喷漆线废水的工艺特性及动力学模型[J]. 水处理技术, 2019, 45(10): 60-63. [12] 孙水裕, 周登健, 罗保全, 等. Fenton工艺在涂装废水中的应用探讨[J]. 中国高新技术企业, 2013(25): 37-38. doi: 10.3969/j.issn.1009-2374.2013.25.020 [13] 谢永华, 杨晨曦. 混凝沉降-Fenton氧化法处理水性涂料废水[J]. 中国涂料, 2020, 35(3): 70-73. [14] VERONICA P N, EMILIO R, MARTA P, et al. Current advances and trends in electro-Fenton process using heterogeneous catalysts: A review[J]. Chemosphere, 2018, 201: 399-416. doi: 10.1016/j.chemosphere.2018.03.002 [15] DBIRA S, BENSALAH N, ZAGHO M M, et al. Oxidative degradation of tannic acid in aqueous solution by UV/S2O82− and UV/H2O2/Fe2+ processes: A comparative study[J]. Applied Sciences, 2019, 9(1): 156. doi: 10.3390/app9010156 [16] 梅凤仙. 酸析-芬顿-水解酸化-SBR工艺处理油墨清洗废水的研究[D]. 南京: 南京信息工程大学, 2020. [17] 张峰, 詹俊阁, 李学伟, 等. 电芬顿法去除化学镀镍废水中的镍、总磷和COD[J]. 环境工程学报, 2020, 14(9): 2428-2435. doi: 10.12030/j.cjee.201912042 [18] HERMOSILLA D, CORTIJO M, HUANG C P. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes[J]. Science of the Total Environment, 2009, 407(11): 3473-3481. doi: 10.1016/j.scitotenv.2009.02.009 [19] HU H J, TANG Y, YING H S, et al. The effect of copper on iron reduction and its application to the determination of total iron content in iron and copper ores by potassium dichromate titration[J]. Talanta, 2014, 125: 425-431. doi: 10.1016/j.talanta.2014.03.008 [20] 赵登, 张安龙, 罗清, 等. Fenton-絮凝工艺深度处理造纸废水[J]. 纸和造纸, 2013, 32(3): 58-61. doi: 10.13472/j.ppm.2013.03.036 [21] 汤优敏, 官宝红, 吴忠标. Fenton去除废水中甲基多巴的机制及动力学[J]. 环境科学, 2008(5): 1271-1276. doi: 10.3321/j.issn:0250-3301.2008.05.022 [22] HUANG T, ZHANG G M, ZHANG N, et al. Pre-magnetization by weak magnetic field enhancing Fe0-Fenton process for wastewater treatment[J]. Chemical Engineering Journal, 2018, 346: 120-126. doi: 10.1016/j.cej.2018.04.009 [23] BERKANT K, BELGIN G. Degradation of Acid Red 274 using H2O2 in subcritical water: Application of response surface methodology[J]. Journal of hazardous materials, 2012, 201-202: 100-106. doi: 10.1016/j.jhazmat.2011.11.045 [24] 秦宇, 吴慧芳, 陈文, 等. 响应曲面法优化Fenton氧化处理印染废水[J]. 印染助剂, 2021, 38(6): 38-42. doi: 10.3969/j.issn.1004-0439.2021.06.009 [25] MURALIDHAR R. V, CHIRUMAMILA R. R, MARCHANT R, et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources[J]. Biochemical Engineering Journal, 2001, 9(1): 17-23. doi: 10.1016/S1369-703X(01)00117-6 [26] 伊学农, 耿成, 董艳玲, 等. Fenton+水解/接触氧化处理涂装废水工程改造与调试[J]. 中国给水排水, 2017, 33(22): 119-124. doi: 10.19853/j.zgjsps.1000-4602.2017.22.027 [27] 韩勇刚. Fenton氧化法处理喷漆废水的研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. [28] 翟晶晶, 袁怡, 卜志威, 等. 电动自行车涂装废水处理工程实例及运行分析[J]. 给水排水, 2022, 48(3): 68-74. doi: 10.13789/j.cnki.wwe1964.2021.11.17.0005