新型纳米零价铁的绿色合成和改性工艺研究进展
Green synthesis and modification of nano zero-valent iron
-
摘要: 环境友好型材料的合成已成为当前研究的热点.纳米零价铁因卓越还原性能应用潜力巨大,纳米铁颗粒的绿色合成技术可避免污染并降低成本,提高修复效率.本文介绍了纳米铁合成工艺的绿色化进展,其中包括采用各类原始材料新型合成方法、合成工艺条件选择和制备产物的生成过程,经济性分析等.另外还比较了纳米铁颗粒绿色分散和负载改性过程中工艺试验参数、收率和选择性等,并对绿色纳米零价铁技术的工程应用和关键问题进行讨论,以及未来发展趋势进行展望.Abstract: Synthesis of environmental friendly materials has become a current hot spot. Due to its remarkable reduction performance, nanoscale zero-valent iron(NZVI) is regarded as one of the most promising nano meterials for application. Green synthesis technology of iron nanoparticles can avoid secondary pollution, reduce costs, and increase removal efficiency of contaminants. In this paper, the latest research progress on green synthesis and modification of nanoscale zero-valent iron is reviewed, including the novel synthesis methods using all kinds of raw materials, selection of synthetic conditions, generation process of the product and economic analysis, etc. In addition, the experimental parameters, the the yield, and selectivity of green modification of nano zero-valent iron particles are compared. Furthermore, the engineering application, key issues and development trend of green NZVI technology are discussed.
-
Key words:
- nano zero-valent iron /
- green material /
- green synthesis /
- green modification.
-
-
[1] ZHUANG J, Gentry R W. Environmental application and risks of nanotechnology:A balanced view[J]. American Chemical Society, 2011, 1079:41-67. [2] 程荣, 王建龙, 张伟贤. 纳米金属铁降解有机卤化物的研究进展[J]. 化学进展, 2006, 18(1):93-99. CHENG R, WANG J L, ZHANG W X. The research progress on degradation of halogenated organic compounds by nano iron[J]. Progress in Chemistry, 2006, 18(1):93-99(in Chinese).
[3] NADAGOUDA M N, VARMA R S. Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2:Density assisted self-assembly of nanospheres, wires and rods[J]. Green Chemistry, 2006, 8(6):516-518. [4] MARKOVA Z, NOVAK P, KASLIK J, et al. Iron(Ⅱ,Ⅲ)-polyphenol complex nanoparticles derived from green tea with remarkable ecotoxicological impact[J]. Sustainable Chemical & Engineering, 2014, 2(7):1674-1680. [5] MITTAL A K, Chisti Y, BANERJEE U C. Synthesis of metallic nanoparticles using plant extracts[J]. Biotechnology Advances, 2013, 31(2):346-356. [6] KHARISSOVA O V, RASIKA DIAS H V, KHARISOV B I, et al. The greener synthesis of nanoparticles[J]. Trends in Biotechnology, 2013, 31(4):240-248. [7] HUANG L L, LUO F, CHEN Z L, et al. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 137:154-159. [8] NJAGI E C, HUANG H, STAFFORD L, et al. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts[J]. Langmuir, 2011, 27(1):264-271. [9] HUANG L L, WENG X L, CHEN Z L, et al. Green synthesis of iron nanoparticles by various tea extracts:Comparative study of the reactivity[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2014, 130:295-301. [10] WANG T, LIN J J, CHEN Z L, et al. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution[J]. Journal of Cleaner Production, 2014, 83:413-419. [11] PRASAD K S, GANDHI P, SELVARAJ K, Synthesis of green nano iron particles(GnIP) and their application in adsorptive removal of As(Ⅲ) and As(Ⅴ) from aqueous solution[J]. Applied Surface Science, 2014, 317:1052-1059. [12] LAUFENBERG G, KUNZ B, NYSTROEM M. Transformation of vegetable waste into value added products:(A) the upgrading concept;(B) practical implementations[J]. Bioresource Technology, 2003, 87:167-198. [13] MACHADOD S, GROSSO J P, NOUWS H P A, et al. Utilization of food industry wastes for the production of zero-valent iron nanoparticles[J]. Science of the Total Environment, 2014, 496:233-240. [14] MACHADO S, STAWINSKI W, SLONINA P, et al. Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen[J]. Science of the Total Environment, 2013, 461-462:323-329. [15] WANG Q, JEONG S W, CHOI H. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles:Direct observation and quantification[J]. Journal of Hazardous Materials, 2012, 213-214:299-310. [16] ZHA S X, CHENG Y, GAO Y, et al. Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin[J]. Chemical Engineering Journal, 2014, 255:141-148. [17] CHRYSOCHOOU M, JOHNSTON C P, DAHAL G. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2012, 201-202:33-42. [18] ZHANG X, LIN S, LU X Q. Removal of Pb(Ⅱ) from water using synthesized kaolin supported nanos cale zero-valent iron[J]. Chemical Engineering Journal, 2010, 163(3):243-248. [19] WANG F F, GAO Y, SUN Q, et al. Degradation of microcystin-LR using functional clay supported bimetallic Fe/Pd nanoparticles based on adsorption and reduction[J]. Chemical Engineering Journal, 2014, 255:55-62. [20] LIU T Y, WANG Z L, YAN X X, et al. Removal of mercury(Ⅱ) and chromium(Ⅵ) from wastewater using a new and effective composite:Pumice-supported nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2014, 245:34-40. [21] WANG X Y, ZHU M P, LIU H L, et.al. Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-dichlorophenol[J]. Science of the Total Environment, 2013, 449:157-167. [22] 和婧, 王向宇, 王培, 等. PAA改性纳米铁强化还原降解水中亚甲基蓝[J]. 环境科学, 2015, 36(3):980-988. HE J, WANG X Y, WANG P, et al. Enhanced reductive decoloration of methylene blue by polyacrylic acid modified zero-valent iron nanoparticles[J]. Environmental Science, 2015, 36(3):980-988(in Chinese).
[23] CHEN H, LUO H J, LAN Y C, et al. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone(PVP-K30) modified nanoscale zero valent iron[J]. Journal of Hazardous Materials, 2011, 192(1):44-53. [24] SUN Y P, LI X Q, ZHANG W X, et al. A method for the preparation of stable dispersion of zero-valent iron nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 308(1-3):60-66. [25] 吴智威. 改性竹炭负载Fe/Cu对废水中氯霉素去除研究[D]. 武汉:华中科技大学, 2012. WU Z W. Modified bamboo charcoal loading Fe/Cu to remove chloramphenicol in wastewater[D]. Wuhan:Huazhong University of Science and Technology, 2012(in Chinese). [26] 周筱菲, 刘文莉, 朱剑炯, 等. 竹炭负载纳米级零价铁去除水中的甲基橙[J]. 广东化工, 2013,40(14):19-20. ZHOU X F, LIU W L, ZHU J J, et al. Study on removal of methyl orange in aqueous solution using bamboo-charcoal supported nanoscale zero-valent iron particles[J]. Guangdong Chemical Industry, 2013, 40(14):19-20(in Chinese).
[27] ZHOU Y M, GAO B, ZIMMERMAN A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology, 2014, 152:538-542. [28] CHUN Y, SHENG G Y, CHIOU C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science & Technology, 2004, 38(17):4649-4655. [29] SONG Z G, LIAN F, YU Z H, et al. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution[J]. Chemical Engineering Journal, 2014, 242:36-42. [30] YAN J C, HAN L, GAO W G, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J]. Bioresource Technology, 2015, 175:269-274. [31] INYANG M, GAO B, YAO Y, et al. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested sugarcane bagasse[J]. Bioresource Technology, 2012, 110:50-56. [32] XUE Y, GAO B, YAO Y, et al. Hydrogen peroxide modification enhances the ability of biochar(hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals:Batch and column tests[J]. Chemical Engineering Journal, 2012, 200-202:673-680. [33] ZHANG M, GAO B. Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite[J]. Chemical Engineering Journal, 2013, 226:286-292. [34] DEVI P, SAROHA A K. Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent[J]. Bioresource Technology, 2014, 169:525-531. [35] DEVI P, SAROHA A K. Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni-ZVI magnetic biochar composites synthesized from paper mill sludge[J]. Chemical Engineering Journal, 2015, 271:195-203. [36] 高国振, 李金轩, 李小燕, 等. 纳米零价铁/玉米淀粉的制备及其对Pb2+的吸附[J]. 化工环保, 2014, 34(4):376-379. GAO G Z, LI J X, LI X Y, et al. Preparation of nano zero-valent iron/cornstarch and adsorption of pb2+[J]. Environmental protection of chemical industry, 2014, 34(4):376-379(in Chinese).
[37] LI X Y, ZHANG M, LIU Y B, et al. Removal of U(Ⅵ)in aqueous solution by nanoscale zerovalent iron(nZVI)[J]. Water Quality, Exposure and Health, 2013, 5(1):31-40. [38] RAIZADA P, SINGH P, KUMAR A, et al. Zero valent iron-brick grain nanocomposite for enhanced solar-Fenton removal of malachite Green[J]. Separation and Purification Technology, 2014, 133:429-437. [39] LÓPEZ-TÉLLEZ G, BARREAR-DÍAZ C E, BALDERAS-HERNÁNDE P, et al. Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith[J]. Chemical Engineering Journal, 2011, 173(2):480-485. [40] ZHANG M, BACIK D B, ROBERTS C B, et al. Catalytic hydrodechlorination of trichloroethylene in water with supported CMC-stabilized palladium Nanoparticles[J]. water research, 2013, 47(11):3706-3715. [41] HE F, ZHAO D Y. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers[J]. Environmental Science & Technology, 2007, 41(17):6216-6221. [42] WANG Q, QIAN H J, YANG Y P, et al. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent ironnanoparticles[J]. Journal of Contaminant Hydrology, 2010, 114(1-4):35-42. [43] 吉毅, 李宗石, 乔卫红. 瓜尔胶的化学改性[J]. 日用化学工业, 2005, 35(2):111-114. JI Y, LI Z S, QIAO W H. Chemical modification of guar gum[J]. china surfactant detergent & cosmetics, 2005, 35(2):111-114(in Chinese).
[44] TIRAFERRI A, CHEN K L, SETHI R, et al. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum[J]. Journal of Colloid and Interface Science, 2008, 324(1-2):71-79. [45] VELIMIROVIC M, TOSCO T, UYTTEBROEK M, et al. Field assessment of guar gum stabilized microscale zerovalent iron particles for in situ remediation of 1,1,1-trichloroethane[J]. Journal of Contaminant Hydrology, 2014, 164:88-99. [46] KUANG Y, DU J H, ZHOU R B, et al. Calcium alginate encapsulated Ni/Fe nanoparticles beads for simultaneous removal of Cu(Ⅱ) and monochlorobenzene[J]. Journal of Colloid and Interface Science, 2015, 447:85-91. [47] HE F, ZHAO D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water[J]. Environmental Science & Technology, 2005, 39(9):3314-3320. [48] WANG X Y, LE L, PEDRO J J, et al. Synthesis and characterization of green agents coated Pd/Fe bimetallic nanoparticles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50:297-305. [49] BASNET M, GHOSHAL S, TUFENKJI N, et al. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media[J]. Environmental Science & Technology, 2013, 47(23):13355-13364. [50] JIEMVARANGKUL P, ZHANG W X, LIEN H L, et al. Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron(nZVI) in porous media[J]. Chemical Engineering Journal, 2011, 170(2-3):482-491. [51] WANG X Y, WANG P, MA J, et al. Synthesis, characterization, and reactivity of cellulose modified nanozero-valent iron for dye discoloration[J]. Applied Surface Science, 2015, 345:57-66. [52] WANG X Y, LI F, YANG J C. Polyvinyl pyrrolidone-modified Pd/Fe nanoparticles for enhanced dechlorination of 2,4-dichlorophenal[J]. Desalination and Water Treatment, 2014, 52(40-42):7925-7936. [53] CAO J, XU R F, TANG H, et al. Synthesis of monodispersed CMC-stabilized Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1, 2, 4-trichlorobenzene[J]. Science of the Total Environment, 2011, 409:2336-2341. [54] LOVLEY D R. Microbial Fe(Ⅲ) reduction in subsurface environments[J]. Fems Microbiology Reviews, 1997, 20(3-4):305-313. [55] SHIN H Y, SINGHAL N, PARK J W. Regeneration of iron for trichloroethylene reduction by shewanella alga BrY[J]. Chemosphere, 2007, 68(6):1129-1134. [56] TOSCO T, GASTONE F, SETHI R, et al. Guar gum solutions for improved delivery of iron particles in porous media(Part 2):Iron transport tests and modeling in radial geometry[J]. Journal of Contaminant Hydrology, 2014, 166:34-51. [57] KOCUR C M D, LOMHEIM L, BOPARAI H K, et al. Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection[J]. Environmental Science & Technology, 2015, 49(14):8648-8656. [58] LUNA M, GASTONE F, TOSCO T, et al. Pressure-controlled injection of guar gum stabilized microscale zero valent iron for groundwater remediation[J]. Journal of Contaminant Hydrology, 2015, 181:46-58. -

计量
- 文章访问数: 2951
- HTML全文浏览数: 2682
- PDF下载数: 1666
- 施引文献: 0