低分子量有机酸对土壤微生物数量和酶活性的影响

孔涛, 刘民, 淑敏, 王凯, 吕刚. 低分子量有机酸对土壤微生物数量和酶活性的影响[J]. 环境化学, 2016, 35(2): 348-354. doi: 10.7524/j.issn.0254-6108.2016.02.2015092701
引用本文: 孔涛, 刘民, 淑敏, 王凯, 吕刚. 低分子量有机酸对土壤微生物数量和酶活性的影响[J]. 环境化学, 2016, 35(2): 348-354. doi: 10.7524/j.issn.0254-6108.2016.02.2015092701
KONG Tao, LIU Min, SHU Min, WANG Kai, LYU Gang. Effect of low molecular weight organic acids on soil microbe number and soil enzyme activities[J]. Environmental Chemistry, 2016, 35(2): 348-354. doi: 10.7524/j.issn.0254-6108.2016.02.2015092701
Citation: KONG Tao, LIU Min, SHU Min, WANG Kai, LYU Gang. Effect of low molecular weight organic acids on soil microbe number and soil enzyme activities[J]. Environmental Chemistry, 2016, 35(2): 348-354. doi: 10.7524/j.issn.0254-6108.2016.02.2015092701

低分子量有机酸对土壤微生物数量和酶活性的影响

  • 基金项目:

    辽宁省自然科学基金(2015020805)和辽宁省科学事业公益研究基金(2015002011)资助.

Effect of low molecular weight organic acids on soil microbe number and soil enzyme activities

  • Fund Project: Supported by the General Program of Natural Science Foundation of Liaoning Province of China(2015020805) and Scientific Research Foundation for Public Welfare of Liaoning Province of China(2015002011).
  • 摘要: 采用室内培养实验测定了4种低分子量有机酸在低浓度(4 mmol·kg-1干土)、中浓度(20 mmol·kg-1干土)和高浓度(100 mmol·kg-1干土)梯度下,对土壤微生物数量、呼吸强度和土壤酶活性的影响规律.结果表明,随着有机酸浓度的升高,甲酸、草酸和柠檬酸处理的土壤细菌数量和呼吸强度持续升高,真菌数量持续降低,放线菌数量在低浓度被促进,中浓度和高浓度被抑制;苯甲酸则表现出了与前3种有机酸不同的规律,土壤真菌数量持续升高,而土壤细菌、放线菌数量和土壤呼吸强度则表现了低浓度升高而后不断降低的特点.对于土壤酶活性而言,甲酸处理的淀粉酶、脲酶和磷酸酶活性和苯甲酸处理的土壤过氧化氢酶、脱氢酶和土壤肥力生物指数(BIF)在低浓度升高,而在中浓度和高浓度降低;甲酸处理的过氧化氢酶、脱氢酶和BIF,草酸处理和柠檬酸处理的蛋白酶、脱氢酶、土壤酶活性指数(EAN)、BIF,苯甲酸处理的蛋白酶和脲酶活性呈现随着有机酸浓度的升高而持续上升的趋势.综合土壤微生物数量、土壤呼吸和土壤酶活性,对土壤生态质量而言,在低浓度时苯甲酸处理最高,中浓度时柠檬酸处理最高,而在高浓度时草酸处理最高.
  • 加载中
  • [1] 杨杰文, 钟来源, 郭荣发, 等.有机酸对砖红壤的溶解及固定态磷素的活化[J]. 环境化学, 2010, 29(6):1063-1067.

    YANG J W, ZHONG L Y, GUO R F, et al. Dissolution of latosol and the release of immobilized phosphorus promoted by organic acids[J]. Environmental Chemistry, 2010, 29(6):1063-1067(in Chinese).

    [2] 占丽平, 丛日环, 李小坤, 等.低分子量有机酸对红壤和黄褐土K+吸附动力学的影响[J]. 土壤学报, 2012, 49(6):1147-1157.

    ZHAN L P, CONG R H, LI X K, et al. Effect of low molecular weight organic acids on transformation of potassium in red soil and yellow cinnamon soil in south China[J]. Acta Pedologica Sinica, 2012, 49(6):1147-1157(in Chinese).

    [3] 杨杰文, 钟来源, 郭荣发.有机酸溶解砖红壤过程中Mn(Ⅱ)的释放规律[J]. 环境化学, 2011, 30(7):1348-1353.

    YANG J W, ZHONG L Y, GUO R F. Release of Mn(Ⅱ) during organic acid promoted dissolution of Latosol[J]. Environmental Chemistry, 2011, 30(7):1348-1353(in Chinese).

    [4] 梁金利, 蔡焕兴, 段雪梅, 等.有机酸土柱淋洗法修复重金属污染土壤[J]. 环境工程学报, 2012, 6(9):3339-3343.

    LIANG J L, CAI H X, DUAN X M, et al. Remediation of heavy metal-polluted soils using organic acid washing[J]. Chinese Journal of Environmental Engineering, 2012, 6(9):3339-3343(in Chinese).

    [5] 杨海琳, 廖柏寒.低分子有机酸去除土壤中重金属条件的研究[J]. 农业环境科学学报, 2010, 29(12):2330-2337.

    YANG H L, LIAO B H. Extraction condition for heavy metals from contaminated soil by using low molecular organic acids[J]. Journal of Agro-Environment Science, 2010, 29(12):2330-2337(in Chinese).

    [6] 党红交, 孙瑞, 刘娟, 等.低分子量有机酸作用下土壤中菲和芘的残留与及形态[J]. 土壤学报, 2012, 49(3):499-506.

    DANG H J, SUN R, LIU J, et al. Effect of low molecular weight organic acids on residues and forms of phenanthrene and pyrene in soil[J]. Acta Pedologica Sinica, 2012, 49(3):499-506(in Chinese).

    [7] 杨丽华, 龚道新, 袁雅洁, 等.低分子量有机酸对赤铁矿吸附二氯喹啉酸的影响及机理[J]. 农业环境科学学报, 2015, 34(7):1301-1310.

    YANG L H, GONG D X, YUAN Y J, et al. Effect of low molecular weight organic acids on adsorption of quinclorac by hematite[J]. Journal of Agro-Environment Science, 2015, 34(7):1301-1310(in Chinese).

    [8]
    [9] 张根柱.外源柠檬酸对塿土养分、酶活性及微生物活性的影响[D]. 杨凌:西北农林科技大学硕士学位论文, 2011:41-57. ZHANG G Z. Effects of exogenous citric acid on soil nutrients and enzyme activities and microbial activity of old manured loessal soil[D]. Yangling:Thesis for Master Degree of Northwest A & F University, 2011:41

    -57(in Chinese).

    [10] 马云华, 王秀峰, 魏珉, 等.黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响[J]. 应用生态学报, 2005, 16(11):2149-2153.

    MA Y H, WANG X F, WEI M, et al. Accumulation of phenolic acids in continuously cropped cucumber soil and their effects on soil microbes and enzyme activities[J]. Chinese Journal of Applied Ecology, 2005,16(11):2149-2153(in Chinese).

    [11] 吕卫光, 沈其荣, 余廷园, 等.酚酸化合物对土壤酶活性和土壤养分的影响[J]. 植物营养与肥料学报, 2006, 12(6):845-849.

    LYU W G, SHEN Q R, YU T Y, et al. The effect of added phenolic acids on soil enzyme activities and nutrients[J]. Plant Nutrition and Fertilizer Science, 2006,12(6):845-849(in Chinese).

    [12] 刘占锋, 傅伯杰, 刘国华, 等.土壤质量与土壤质量指标[J]. 生态学报, 2006, 26(3):901-913.

    LIU Z F, FU B J, LIU G H, et al. Soil quality:Concept, indicators and its assessment[J]. Acta Ecologica Sinica, 2006, 26(3):901-913(in Chinese).

    [13] BECK T. Methods and application of soil microbiological analysis at the Landensanstalt fur Bodenkultur and Pflanzenbau(LBB) for the determination of some aspects of soil fertility[C]//Nemes M P, Kiss S, Papacostea P, et al. Proceedings of the fifith Symposium on Soil Biology. Bucharest:Rumanian National Society of Soil Science, 1984:13-20.
    [14] STEFANIC G, ELIADE G,CHIRNOGEANU I. Researches concerning a biological index of fertility[C]//Nemes M P, Kiss S, Papacostea P, et al. Proceedings of the fifith Symposium on Soil Biology. Bucharest:Rumanian National Society of Soil Science, 1984:35-45.
    [15] KANG G S, BERI V, SIDHU B S, et al. A new index to assess soil quality and sustainability of wheat-based cropping systems[J]. Biology and fertility of soils, 2005, 41(4):389-398.
    [16] SAVIOZZI A, CARDELLI R, PUCCIO R D. Impact of salinity on soil biological activities:a laboratory experiment[J]. Communications in Soil Science and Plant Analysis, 2011, 42(6):358-367.
    [17] LIAO Y P, MIN X B, YANG Z H, et al. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation[J]. Environmental Science and Pollution Research, 2014, 21(1):379-388.
    [18] 贾夏, 董岁明, 周春娟.低含量Pb对Cd处理下冬小麦根际土壤氧化还原酶活性、BIF及C/N的影响[J]. 应用与环境生物学报, 2012, 18(6):917-923.

    JIA X, DONG S M, ZHOU C J. Effects of low doses of Pb on rhizosphere soil oxidoreductase activities, BIF, and C:N ratio of winter wheat seedlings under Cd[J]. Chinese Journal of Applied and Environmental Biology, 2012,18(6):917-923(in Chinese).

    [19] JONES D L. Organic acids in the rhizosphere-a critical review[J]. Plant and Soil, 1998, 205(1):25-44.
    [20] WANG X X,LI Q M,DING J H,et al.An improved method for extraction of low molecular weight organic acids in variable charge soils.Analytical Sciences, 2007, 23(5):539-543.
    [21] JONES D L, DENNIS P G, OWEN A G, et al. Organic acids behavior in soils-misconceptions and knowledge gaps[J]. Plant and Soil, 2003, 248(1):31-41.
    [22] SHEN A L, LI X Y, KANAMORI T, et al. Low-molecular-weight organic acids in two soils incubated with plant residues under different moisture conditions:aliphatic acids[J]. Pedosphere, 1997, 7(1):79-86.
    [23] 章家恩.生态学常用实验研究方法与技术[M]. 北京:化学工业出版社,2007. ZHANG J E. Methods and techniques of experimental research in ecology[M]. Beijing:Chemical Industry Press, 2007(in Chinese).
    [24] NARASIMHA G, SRIDEVI A, REDDY A V S, et al. Effect of cotton ginning mill industrial effluents on soil dehydrogenase, phosphatase, amylase and invertase enzyme activities[J]. International Journal of Agricultural and Food Science, 2012, 2(1):1-6.
    [25] SHAHRIARI F, HIGASHI T, TAMURA K. Effects of clay addition on soil protease activities in andosols in the presence of cadmium[J]. Soil Science and Plant Nutrition, 2010, 56(4):560-569.
    [26] EMAMI S, POURBABAEE A A, ALIKHANI H A. Effect of paraffin on the urease activity of soil[J]. Technical Journal of Engineering and Applied Sciences, 2013, 3(15):1526-1529.
    [27] KIZILKAYA R, AKCA I, ASKIN T. Effect of soil contamination with azadirachtin on dehydrogenase and catalase activity of soil[J]. Eurasian Journal of Soil Science, 2012, 24(2):98-103.
    [28] SCHNURER J, CLARHOLM M, ROSSWALL T. Microbial biomass and activity in an agricultural soil with different organic-matter contents[J]. Soil Biology and Biochemistry, 1985, 17(5):611-618
    [29] BOWERS J H, NAMETH S T, RIEDEL R M, et al. Infection and colonization of potato roots by Verticillium dahliae as affected by Pratylenchus penetrans and P-crenatus[J]. Phytopathology, 1996, 86(6):614-621.
    [30]
    [31] 侯振建.食品添加剂及应用技术[M]. 北京:化学工业出版社, 2004. HOU Z J. Food additives and its application technology[M]. Beijing:Chemical Industry Press, 2004(in Chinese).
    [32] 刘强, 姚拓, 马晖玲.菌肥与柠檬酸互作对石灰性土壤生物学特性及草坪质量的影响[J]. 草业学报, 2014, 23(5):223-230.

    LIU Q, YAO T, MA H L. Combined effects of bio-fertilizer and citric acid on turf quality and soil biology on a calcareous soil[J]. Acta Prataculturae Sinica, 2014, 23(5):223-230(in Chinese).

    [33] 鞠会艳, 韩丽梅, 王树起, 等.连作大豆根分泌物对根腐病病原菌的化感作用[J]. 应用生态学报, 2002, 13(6):723-727.

    JU H Y, HAN L M, WANG S Q, et al. Allelopathic effect of root exudates on pathogenic fungi of root rot in continuous cropping soybean[J]. Chinese Journal of Applied Ecology, 2002,13(6):723-727(in Chinese).

    [34] GARCIA C, HERNANDEZ T, COSTA F. Microbial activity in soils under mediterranean environmental-conditions[J]. Soil Biology and Biochemistry, 1994, 26(9):1185-1191.
    [35] 袁光林, 马瑞霞, 刘秀芬, 等.化感物质对土壤脲酶活性的影响[J]. 环境科学, 1998, 19(2):55-57.

    YUAN G L, MA R X, LIU X F, et al. Effects of allelochemicals on urease activity[J]. Environmental Science, 1998, 19(2):55-57(in Chinese).

    [36] 赵振华, 黄巧云, 陈雯莉, 等.几种低分子量有机酸、磷酸对土壤胶体和矿物吸附酸性磷酸酶的影响[J]. 中国农业科学, 2002, 35(11):1375-1380.

    ZHAO Z H, HUANG Q Y, CHEN W L, et al. Effect of several low-molecular-weight organic acids and phosphate on the adsorption of acid phosphatase on soil colloids and minerals[J]. Scientia Agricultura Sinica, 2002, 35(11):1375-1380(in Chinese).

    [37] 马瑞霞.化感物质对硝酸还原酶活性影响的研究[J]. 环境科学, 1999, 20(1):80-83.

    MA R X. Study on influence of allelochemicals on activity of nitrate reductases[J]. Environmental Science, 1999, 20(1):80-83(in Chinese).

  • 加载中
计量
  • 文章访问数:  1731
  • HTML全文浏览数:  1610
  • PDF下载数:  652
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-09-27
  • 刊出日期:  2016-02-15
孔涛, 刘民, 淑敏, 王凯, 吕刚. 低分子量有机酸对土壤微生物数量和酶活性的影响[J]. 环境化学, 2016, 35(2): 348-354. doi: 10.7524/j.issn.0254-6108.2016.02.2015092701
引用本文: 孔涛, 刘民, 淑敏, 王凯, 吕刚. 低分子量有机酸对土壤微生物数量和酶活性的影响[J]. 环境化学, 2016, 35(2): 348-354. doi: 10.7524/j.issn.0254-6108.2016.02.2015092701
KONG Tao, LIU Min, SHU Min, WANG Kai, LYU Gang. Effect of low molecular weight organic acids on soil microbe number and soil enzyme activities[J]. Environmental Chemistry, 2016, 35(2): 348-354. doi: 10.7524/j.issn.0254-6108.2016.02.2015092701
Citation: KONG Tao, LIU Min, SHU Min, WANG Kai, LYU Gang. Effect of low molecular weight organic acids on soil microbe number and soil enzyme activities[J]. Environmental Chemistry, 2016, 35(2): 348-354. doi: 10.7524/j.issn.0254-6108.2016.02.2015092701

低分子量有机酸对土壤微生物数量和酶活性的影响

  • 1.  辽宁工程技术大学环境科学与工程学院, 阜新, 123000;
  • 2.  辽宁工程技术大学理学院, 阜新, 123000
基金项目:

辽宁省自然科学基金(2015020805)和辽宁省科学事业公益研究基金(2015002011)资助.

摘要: 采用室内培养实验测定了4种低分子量有机酸在低浓度(4 mmol·kg-1干土)、中浓度(20 mmol·kg-1干土)和高浓度(100 mmol·kg-1干土)梯度下,对土壤微生物数量、呼吸强度和土壤酶活性的影响规律.结果表明,随着有机酸浓度的升高,甲酸、草酸和柠檬酸处理的土壤细菌数量和呼吸强度持续升高,真菌数量持续降低,放线菌数量在低浓度被促进,中浓度和高浓度被抑制;苯甲酸则表现出了与前3种有机酸不同的规律,土壤真菌数量持续升高,而土壤细菌、放线菌数量和土壤呼吸强度则表现了低浓度升高而后不断降低的特点.对于土壤酶活性而言,甲酸处理的淀粉酶、脲酶和磷酸酶活性和苯甲酸处理的土壤过氧化氢酶、脱氢酶和土壤肥力生物指数(BIF)在低浓度升高,而在中浓度和高浓度降低;甲酸处理的过氧化氢酶、脱氢酶和BIF,草酸处理和柠檬酸处理的蛋白酶、脱氢酶、土壤酶活性指数(EAN)、BIF,苯甲酸处理的蛋白酶和脲酶活性呈现随着有机酸浓度的升高而持续上升的趋势.综合土壤微生物数量、土壤呼吸和土壤酶活性,对土壤生态质量而言,在低浓度时苯甲酸处理最高,中浓度时柠檬酸处理最高,而在高浓度时草酸处理最高.

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回