新型纳米零价铁的绿色合成和改性工艺研究进展

杜毅, 王向宇. 新型纳米零价铁的绿色合成和改性工艺研究进展[J]. 环境化学, 2016, 35(2): 337-347. doi: 10.7524/j.issn.0254-6108.2016.02.2015081702
引用本文: 杜毅, 王向宇. 新型纳米零价铁的绿色合成和改性工艺研究进展[J]. 环境化学, 2016, 35(2): 337-347. doi: 10.7524/j.issn.0254-6108.2016.02.2015081702
DU Yi, WANG Xiangyu. Green synthesis and modification of nano zero-valent iron[J]. Environmental Chemistry, 2016, 35(2): 337-347. doi: 10.7524/j.issn.0254-6108.2016.02.2015081702
Citation: DU Yi, WANG Xiangyu. Green synthesis and modification of nano zero-valent iron[J]. Environmental Chemistry, 2016, 35(2): 337-347. doi: 10.7524/j.issn.0254-6108.2016.02.2015081702

新型纳米零价铁的绿色合成和改性工艺研究进展

  • 基金项目:

    国家自然科学基金(51368025)资助.

Green synthesis and modification of nano zero-valent iron

  • Fund Project: Supported by the National Natural Science Foundation of China(51368025).
  • 摘要: 环境友好型材料的合成已成为当前研究的热点.纳米零价铁因卓越还原性能应用潜力巨大,纳米铁颗粒的绿色合成技术可避免污染并降低成本,提高修复效率.本文介绍了纳米铁合成工艺的绿色化进展,其中包括采用各类原始材料新型合成方法、合成工艺条件选择和制备产物的生成过程,经济性分析等.另外还比较了纳米铁颗粒绿色分散和负载改性过程中工艺试验参数、收率和选择性等,并对绿色纳米零价铁技术的工程应用和关键问题进行讨论,以及未来发展趋势进行展望.
  • 加载中
  • [1] ZHUANG J, Gentry R W. Environmental application and risks of nanotechnology:A balanced view[J]. American Chemical Society, 2011, 1079:41-67.
    [2] 程荣, 王建龙, 张伟贤. 纳米金属铁降解有机卤化物的研究进展[J]. 化学进展, 2006, 18(1):93-99.

    CHENG R, WANG J L, ZHANG W X. The research progress on degradation of halogenated organic compounds by nano iron[J]. Progress in Chemistry, 2006, 18(1):93-99(in Chinese).

    [3] NADAGOUDA M N, VARMA R S. Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2:Density assisted self-assembly of nanospheres, wires and rods[J]. Green Chemistry, 2006, 8(6):516-518.
    [4] MARKOVA Z, NOVAK P, KASLIK J, et al. Iron(Ⅱ,Ⅲ)-polyphenol complex nanoparticles derived from green tea with remarkable ecotoxicological impact[J]. Sustainable Chemical & Engineering, 2014, 2(7):1674-1680.
    [5] MITTAL A K, Chisti Y, BANERJEE U C. Synthesis of metallic nanoparticles using plant extracts[J]. Biotechnology Advances, 2013, 31(2):346-356.
    [6] KHARISSOVA O V, RASIKA DIAS H V, KHARISOV B I, et al. The greener synthesis of nanoparticles[J]. Trends in Biotechnology, 2013, 31(4):240-248.
    [7] HUANG L L, LUO F, CHEN Z L, et al. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 137:154-159.
    [8] NJAGI E C, HUANG H, STAFFORD L, et al. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts[J]. Langmuir, 2011, 27(1):264-271.
    [9] HUANG L L, WENG X L, CHEN Z L, et al. Green synthesis of iron nanoparticles by various tea extracts:Comparative study of the reactivity[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2014, 130:295-301.
    [10] WANG T, LIN J J, CHEN Z L, et al. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution[J]. Journal of Cleaner Production, 2014, 83:413-419.
    [11] PRASAD K S, GANDHI P, SELVARAJ K, Synthesis of green nano iron particles(GnIP) and their application in adsorptive removal of As(Ⅲ) and As(Ⅴ) from aqueous solution[J]. Applied Surface Science, 2014, 317:1052-1059.
    [12] LAUFENBERG G, KUNZ B, NYSTROEM M. Transformation of vegetable waste into value added products:(A) the upgrading concept;(B) practical implementations[J]. Bioresource Technology, 2003, 87:167-198.
    [13] MACHADOD S, GROSSO J P, NOUWS H P A, et al. Utilization of food industry wastes for the production of zero-valent iron nanoparticles[J]. Science of the Total Environment, 2014, 496:233-240.
    [14] MACHADO S, STAWINSKI W, SLONINA P, et al. Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen[J]. Science of the Total Environment, 2013, 461-462:323-329.
    [15] WANG Q, JEONG S W, CHOI H. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles:Direct observation and quantification[J]. Journal of Hazardous Materials, 2012, 213-214:299-310.
    [16] ZHA S X, CHENG Y, GAO Y, et al. Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin[J]. Chemical Engineering Journal, 2014, 255:141-148.
    [17] CHRYSOCHOOU M, JOHNSTON C P, DAHAL G. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2012, 201-202:33-42.
    [18] ZHANG X, LIN S, LU X Q. Removal of Pb(Ⅱ) from water using synthesized kaolin supported nanos cale zero-valent iron[J]. Chemical Engineering Journal, 2010, 163(3):243-248.
    [19] WANG F F, GAO Y, SUN Q, et al. Degradation of microcystin-LR using functional clay supported bimetallic Fe/Pd nanoparticles based on adsorption and reduction[J]. Chemical Engineering Journal, 2014, 255:55-62.
    [20] LIU T Y, WANG Z L, YAN X X, et al. Removal of mercury(Ⅱ) and chromium(Ⅵ) from wastewater using a new and effective composite:Pumice-supported nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2014, 245:34-40.
    [21] WANG X Y, ZHU M P, LIU H L, et.al. Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-dichlorophenol[J]. Science of the Total Environment, 2013, 449:157-167.
    [22] 和婧, 王向宇, 王培, 等. PAA改性纳米铁强化还原降解水中亚甲基蓝[J]. 环境科学, 2015, 36(3):980-988.

    HE J, WANG X Y, WANG P, et al. Enhanced reductive decoloration of methylene blue by polyacrylic acid modified zero-valent iron nanoparticles[J]. Environmental Science, 2015, 36(3):980-988(in Chinese).

    [23] CHEN H, LUO H J, LAN Y C, et al. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone(PVP-K30) modified nanoscale zero valent iron[J]. Journal of Hazardous Materials, 2011, 192(1):44-53.
    [24] SUN Y P, LI X Q, ZHANG W X, et al. A method for the preparation of stable dispersion of zero-valent iron nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 308(1-3):60-66.
    [25] 吴智威. 改性竹炭负载Fe/Cu对废水中氯霉素去除研究[D]. 武汉:华中科技大学, 2012. WU Z W. Modified bamboo charcoal loading Fe/Cu to remove chloramphenicol in wastewater[D]. Wuhan:Huazhong University of Science and Technology, 2012(in Chinese).
    [26] 周筱菲, 刘文莉, 朱剑炯, 等. 竹炭负载纳米级零价铁去除水中的甲基橙[J]. 广东化工, 2013,40(14):19-20.

    ZHOU X F, LIU W L, ZHU J J, et al. Study on removal of methyl orange in aqueous solution using bamboo-charcoal supported nanoscale zero-valent iron particles[J]. Guangdong Chemical Industry, 2013, 40(14):19-20(in Chinese).

    [27] ZHOU Y M, GAO B, ZIMMERMAN A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology, 2014, 152:538-542.
    [28] CHUN Y, SHENG G Y, CHIOU C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science & Technology, 2004, 38(17):4649-4655.
    [29] SONG Z G, LIAN F, YU Z H, et al. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution[J]. Chemical Engineering Journal, 2014, 242:36-42.
    [30] YAN J C, HAN L, GAO W G, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J]. Bioresource Technology, 2015, 175:269-274.
    [31] INYANG M, GAO B, YAO Y, et al. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested sugarcane bagasse[J]. Bioresource Technology, 2012, 110:50-56.
    [32] XUE Y, GAO B, YAO Y, et al. Hydrogen peroxide modification enhances the ability of biochar(hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals:Batch and column tests[J]. Chemical Engineering Journal, 2012, 200-202:673-680.
    [33] ZHANG M, GAO B. Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite[J]. Chemical Engineering Journal, 2013, 226:286-292.
    [34] DEVI P, SAROHA A K. Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent[J]. Bioresource Technology, 2014, 169:525-531.
    [35] DEVI P, SAROHA A K. Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni-ZVI magnetic biochar composites synthesized from paper mill sludge[J]. Chemical Engineering Journal, 2015, 271:195-203.
    [36] 高国振, 李金轩, 李小燕, 等. 纳米零价铁/玉米淀粉的制备及其对Pb2+的吸附[J]. 化工环保, 2014, 34(4):376-379.

    GAO G Z, LI J X, LI X Y, et al. Preparation of nano zero-valent iron/cornstarch and adsorption of pb2+[J]. Environmental protection of chemical industry, 2014, 34(4):376-379(in Chinese).

    [37] LI X Y, ZHANG M, LIU Y B, et al. Removal of U(Ⅵ)in aqueous solution by nanoscale zerovalent iron(nZVI)[J]. Water Quality, Exposure and Health, 2013, 5(1):31-40.
    [38] RAIZADA P, SINGH P, KUMAR A, et al. Zero valent iron-brick grain nanocomposite for enhanced solar-Fenton removal of malachite Green[J]. Separation and Purification Technology, 2014, 133:429-437.
    [39] LÓPEZ-TÉLLEZ G, BARREAR-DÍAZ C E, BALDERAS-HERNÁNDE P, et al. Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith[J]. Chemical Engineering Journal, 2011, 173(2):480-485.
    [40] ZHANG M, BACIK D B, ROBERTS C B, et al. Catalytic hydrodechlorination of trichloroethylene in water with supported CMC-stabilized palladium Nanoparticles[J]. water research, 2013, 47(11):3706-3715.
    [41] HE F, ZHAO D Y. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers[J]. Environmental Science & Technology, 2007, 41(17):6216-6221.
    [42] WANG Q, QIAN H J, YANG Y P, et al. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent ironnanoparticles[J]. Journal of Contaminant Hydrology, 2010, 114(1-4):35-42.
    [43] 吉毅, 李宗石, 乔卫红. 瓜尔胶的化学改性[J]. 日用化学工业, 2005, 35(2):111-114.

    JI Y, LI Z S, QIAO W H. Chemical modification of guar gum[J]. china surfactant detergent & cosmetics, 2005, 35(2):111-114(in Chinese).

    [44] TIRAFERRI A, CHEN K L, SETHI R, et al. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum[J]. Journal of Colloid and Interface Science, 2008, 324(1-2):71-79.
    [45] VELIMIROVIC M, TOSCO T, UYTTEBROEK M, et al. Field assessment of guar gum stabilized microscale zerovalent iron particles for in situ remediation of 1,1,1-trichloroethane[J]. Journal of Contaminant Hydrology, 2014, 164:88-99.
    [46] KUANG Y, DU J H, ZHOU R B, et al. Calcium alginate encapsulated Ni/Fe nanoparticles beads for simultaneous removal of Cu(Ⅱ) and monochlorobenzene[J]. Journal of Colloid and Interface Science, 2015, 447:85-91.
    [47] HE F, ZHAO D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water[J]. Environmental Science & Technology, 2005, 39(9):3314-3320.
    [48] WANG X Y, LE L, PEDRO J J, et al. Synthesis and characterization of green agents coated Pd/Fe bimetallic nanoparticles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50:297-305.
    [49] BASNET M, GHOSHAL S, TUFENKJI N, et al. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media[J]. Environmental Science & Technology, 2013, 47(23):13355-13364.
    [50] JIEMVARANGKUL P, ZHANG W X, LIEN H L, et al. Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron(nZVI) in porous media[J]. Chemical Engineering Journal, 2011, 170(2-3):482-491.
    [51] WANG X Y, WANG P, MA J, et al. Synthesis, characterization, and reactivity of cellulose modified nanozero-valent iron for dye discoloration[J]. Applied Surface Science, 2015, 345:57-66.
    [52] WANG X Y, LI F, YANG J C. Polyvinyl pyrrolidone-modified Pd/Fe nanoparticles for enhanced dechlorination of 2,4-dichlorophenal[J]. Desalination and Water Treatment, 2014, 52(40-42):7925-7936.
    [53] CAO J, XU R F, TANG H, et al. Synthesis of monodispersed CMC-stabilized Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1, 2, 4-trichlorobenzene[J]. Science of the Total Environment, 2011, 409:2336-2341.
    [54] LOVLEY D R. Microbial Fe(Ⅲ) reduction in subsurface environments[J]. Fems Microbiology Reviews, 1997, 20(3-4):305-313.
    [55] SHIN H Y, SINGHAL N, PARK J W. Regeneration of iron for trichloroethylene reduction by shewanella alga BrY[J]. Chemosphere, 2007, 68(6):1129-1134.
    [56] TOSCO T, GASTONE F, SETHI R, et al. Guar gum solutions for improved delivery of iron particles in porous media(Part 2):Iron transport tests and modeling in radial geometry[J]. Journal of Contaminant Hydrology, 2014, 166:34-51.
    [57] KOCUR C M D, LOMHEIM L, BOPARAI H K, et al. Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection[J]. Environmental Science & Technology, 2015, 49(14):8648-8656.
    [58] LUNA M, GASTONE F, TOSCO T, et al. Pressure-controlled injection of guar gum stabilized microscale zero valent iron for groundwater remediation[J]. Journal of Contaminant Hydrology, 2015, 181:46-58.
  • 加载中
计量
  • 文章访问数:  2950
  • HTML全文浏览数:  2681
  • PDF下载数:  1666
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-08-17
  • 刊出日期:  2016-02-15
杜毅, 王向宇. 新型纳米零价铁的绿色合成和改性工艺研究进展[J]. 环境化学, 2016, 35(2): 337-347. doi: 10.7524/j.issn.0254-6108.2016.02.2015081702
引用本文: 杜毅, 王向宇. 新型纳米零价铁的绿色合成和改性工艺研究进展[J]. 环境化学, 2016, 35(2): 337-347. doi: 10.7524/j.issn.0254-6108.2016.02.2015081702
DU Yi, WANG Xiangyu. Green synthesis and modification of nano zero-valent iron[J]. Environmental Chemistry, 2016, 35(2): 337-347. doi: 10.7524/j.issn.0254-6108.2016.02.2015081702
Citation: DU Yi, WANG Xiangyu. Green synthesis and modification of nano zero-valent iron[J]. Environmental Chemistry, 2016, 35(2): 337-347. doi: 10.7524/j.issn.0254-6108.2016.02.2015081702

新型纳米零价铁的绿色合成和改性工艺研究进展

  • 1. 昆明理工大学环境科学与工程学院, 昆明, 650500
基金项目:

国家自然科学基金(51368025)资助.

摘要: 环境友好型材料的合成已成为当前研究的热点.纳米零价铁因卓越还原性能应用潜力巨大,纳米铁颗粒的绿色合成技术可避免污染并降低成本,提高修复效率.本文介绍了纳米铁合成工艺的绿色化进展,其中包括采用各类原始材料新型合成方法、合成工艺条件选择和制备产物的生成过程,经济性分析等.另外还比较了纳米铁颗粒绿色分散和负载改性过程中工艺试验参数、收率和选择性等,并对绿色纳米零价铁技术的工程应用和关键问题进行讨论,以及未来发展趋势进行展望.

English Abstract

参考文献 (58)

返回顶部

目录

/

返回文章
返回