[1] |
ZHUANG J, Gentry R W. Environmental application and risks of nanotechnology:A balanced view[J]. American Chemical Society, 2011, 1079:41-67.
|
[2] |
程荣, 王建龙, 张伟贤. 纳米金属铁降解有机卤化物的研究进展[J]. 化学进展, 2006, 18(1):93-99.
CHENG R, WANG J L, ZHANG W X. The research progress on degradation of halogenated organic compounds by nano iron[J]. Progress in Chemistry, 2006, 18(1):93-99(in Chinese).
|
[3] |
NADAGOUDA M N, VARMA R S. Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2:Density assisted self-assembly of nanospheres, wires and rods[J]. Green Chemistry, 2006, 8(6):516-518.
|
[4] |
MARKOVA Z, NOVAK P, KASLIK J, et al. Iron(Ⅱ,Ⅲ)-polyphenol complex nanoparticles derived from green tea with remarkable ecotoxicological impact[J]. Sustainable Chemical & Engineering, 2014, 2(7):1674-1680.
|
[5] |
MITTAL A K, Chisti Y, BANERJEE U C. Synthesis of metallic nanoparticles using plant extracts[J]. Biotechnology Advances, 2013, 31(2):346-356.
|
[6] |
KHARISSOVA O V, RASIKA DIAS H V, KHARISOV B I, et al. The greener synthesis of nanoparticles[J]. Trends in Biotechnology, 2013, 31(4):240-248.
|
[7] |
HUANG L L, LUO F, CHEN Z L, et al. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 137:154-159.
|
[8] |
NJAGI E C, HUANG H, STAFFORD L, et al. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts[J]. Langmuir, 2011, 27(1):264-271.
|
[9] |
HUANG L L, WENG X L, CHEN Z L, et al. Green synthesis of iron nanoparticles by various tea extracts:Comparative study of the reactivity[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2014, 130:295-301.
|
[10] |
WANG T, LIN J J, CHEN Z L, et al. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution[J]. Journal of Cleaner Production, 2014, 83:413-419.
|
[11] |
PRASAD K S, GANDHI P, SELVARAJ K, Synthesis of green nano iron particles(GnIP) and their application in adsorptive removal of As(Ⅲ) and As(Ⅴ) from aqueous solution[J]. Applied Surface Science, 2014, 317:1052-1059.
|
[12] |
LAUFENBERG G, KUNZ B, NYSTROEM M. Transformation of vegetable waste into value added products:(A) the upgrading concept;(B) practical implementations[J]. Bioresource Technology, 2003, 87:167-198.
|
[13] |
MACHADOD S, GROSSO J P, NOUWS H P A, et al. Utilization of food industry wastes for the production of zero-valent iron nanoparticles[J]. Science of the Total Environment, 2014, 496:233-240.
|
[14] |
MACHADO S, STAWINSKI W, SLONINA P, et al. Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen[J]. Science of the Total Environment, 2013, 461-462:323-329.
|
[15] |
WANG Q, JEONG S W, CHOI H. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles:Direct observation and quantification[J]. Journal of Hazardous Materials, 2012, 213-214:299-310.
|
[16] |
ZHA S X, CHENG Y, GAO Y, et al. Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin[J]. Chemical Engineering Journal, 2014, 255:141-148.
|
[17] |
CHRYSOCHOOU M, JOHNSTON C P, DAHAL G. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2012, 201-202:33-42.
|
[18] |
ZHANG X, LIN S, LU X Q. Removal of Pb(Ⅱ) from water using synthesized kaolin supported nanos cale zero-valent iron[J]. Chemical Engineering Journal, 2010, 163(3):243-248.
|
[19] |
WANG F F, GAO Y, SUN Q, et al. Degradation of microcystin-LR using functional clay supported bimetallic Fe/Pd nanoparticles based on adsorption and reduction[J]. Chemical Engineering Journal, 2014, 255:55-62.
|
[20] |
LIU T Y, WANG Z L, YAN X X, et al. Removal of mercury(Ⅱ) and chromium(Ⅵ) from wastewater using a new and effective composite:Pumice-supported nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2014, 245:34-40.
|
[21] |
WANG X Y, ZHU M P, LIU H L, et.al. Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-dichlorophenol[J]. Science of the Total Environment, 2013, 449:157-167.
|
[22] |
和婧, 王向宇, 王培, 等. PAA改性纳米铁强化还原降解水中亚甲基蓝[J]. 环境科学, 2015, 36(3):980-988.
HE J, WANG X Y, WANG P, et al. Enhanced reductive decoloration of methylene blue by polyacrylic acid modified zero-valent iron nanoparticles[J]. Environmental Science, 2015, 36(3):980-988(in Chinese).
|
[23] |
CHEN H, LUO H J, LAN Y C, et al. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone(PVP-K30) modified nanoscale zero valent iron[J]. Journal of Hazardous Materials, 2011, 192(1):44-53.
|
[24] |
SUN Y P, LI X Q, ZHANG W X, et al. A method for the preparation of stable dispersion of zero-valent iron nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 308(1-3):60-66.
|
[25] |
吴智威. 改性竹炭负载Fe/Cu对废水中氯霉素去除研究[D]. 武汉:华中科技大学, 2012. WU Z W. Modified bamboo charcoal loading Fe/Cu to remove chloramphenicol in wastewater[D]. Wuhan:Huazhong University of Science and Technology, 2012(in Chinese).
|
[26] |
周筱菲, 刘文莉, 朱剑炯, 等. 竹炭负载纳米级零价铁去除水中的甲基橙[J]. 广东化工, 2013,40(14):19-20.
ZHOU X F, LIU W L, ZHU J J, et al. Study on removal of methyl orange in aqueous solution using bamboo-charcoal supported nanoscale zero-valent iron particles[J]. Guangdong Chemical Industry, 2013, 40(14):19-20(in Chinese).
|
[27] |
ZHOU Y M, GAO B, ZIMMERMAN A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology, 2014, 152:538-542.
|
[28] |
CHUN Y, SHENG G Y, CHIOU C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science & Technology, 2004, 38(17):4649-4655.
|
[29] |
SONG Z G, LIAN F, YU Z H, et al. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution[J]. Chemical Engineering Journal, 2014, 242:36-42.
|
[30] |
YAN J C, HAN L, GAO W G, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J]. Bioresource Technology, 2015, 175:269-274.
|
[31] |
INYANG M, GAO B, YAO Y, et al. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested sugarcane bagasse[J]. Bioresource Technology, 2012, 110:50-56.
|
[32] |
XUE Y, GAO B, YAO Y, et al. Hydrogen peroxide modification enhances the ability of biochar(hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals:Batch and column tests[J]. Chemical Engineering Journal, 2012, 200-202:673-680.
|
[33] |
ZHANG M, GAO B. Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite[J]. Chemical Engineering Journal, 2013, 226:286-292.
|
[34] |
DEVI P, SAROHA A K. Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent[J]. Bioresource Technology, 2014, 169:525-531.
|
[35] |
DEVI P, SAROHA A K. Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni-ZVI magnetic biochar composites synthesized from paper mill sludge[J]. Chemical Engineering Journal, 2015, 271:195-203.
|
[36] |
高国振, 李金轩, 李小燕, 等. 纳米零价铁/玉米淀粉的制备及其对Pb2+的吸附[J]. 化工环保, 2014, 34(4):376-379.
GAO G Z, LI J X, LI X Y, et al. Preparation of nano zero-valent iron/cornstarch and adsorption of pb2+[J]. Environmental protection of chemical industry, 2014, 34(4):376-379(in Chinese).
|
[37] |
LI X Y, ZHANG M, LIU Y B, et al. Removal of U(Ⅵ)in aqueous solution by nanoscale zerovalent iron(nZVI)[J]. Water Quality, Exposure and Health, 2013, 5(1):31-40.
|
[38] |
RAIZADA P, SINGH P, KUMAR A, et al. Zero valent iron-brick grain nanocomposite for enhanced solar-Fenton removal of malachite Green[J]. Separation and Purification Technology, 2014, 133:429-437.
|
[39] |
LÓPEZ-TÉLLEZ G, BARREAR-DÍAZ C E, BALDERAS-HERNÁNDE P, et al. Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith[J]. Chemical Engineering Journal, 2011, 173(2):480-485.
|
[40] |
ZHANG M, BACIK D B, ROBERTS C B, et al. Catalytic hydrodechlorination of trichloroethylene in water with supported CMC-stabilized palladium Nanoparticles[J]. water research, 2013, 47(11):3706-3715.
|
[41] |
HE F, ZHAO D Y. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers[J]. Environmental Science & Technology, 2007, 41(17):6216-6221.
|
[42] |
WANG Q, QIAN H J, YANG Y P, et al. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent ironnanoparticles[J]. Journal of Contaminant Hydrology, 2010, 114(1-4):35-42.
|
[43] |
吉毅, 李宗石, 乔卫红. 瓜尔胶的化学改性[J]. 日用化学工业, 2005, 35(2):111-114.
JI Y, LI Z S, QIAO W H. Chemical modification of guar gum[J]. china surfactant detergent & cosmetics, 2005, 35(2):111-114(in Chinese).
|
[44] |
TIRAFERRI A, CHEN K L, SETHI R, et al. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum[J]. Journal of Colloid and Interface Science, 2008, 324(1-2):71-79.
|
[45] |
VELIMIROVIC M, TOSCO T, UYTTEBROEK M, et al. Field assessment of guar gum stabilized microscale zerovalent iron particles for in situ remediation of 1,1,1-trichloroethane[J]. Journal of Contaminant Hydrology, 2014, 164:88-99.
|
[46] |
KUANG Y, DU J H, ZHOU R B, et al. Calcium alginate encapsulated Ni/Fe nanoparticles beads for simultaneous removal of Cu(Ⅱ) and monochlorobenzene[J]. Journal of Colloid and Interface Science, 2015, 447:85-91.
|
[47] |
HE F, ZHAO D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water[J]. Environmental Science & Technology, 2005, 39(9):3314-3320.
|
[48] |
WANG X Y, LE L, PEDRO J J, et al. Synthesis and characterization of green agents coated Pd/Fe bimetallic nanoparticles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50:297-305.
|
[49] |
BASNET M, GHOSHAL S, TUFENKJI N, et al. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media[J]. Environmental Science & Technology, 2013, 47(23):13355-13364.
|
[50] |
JIEMVARANGKUL P, ZHANG W X, LIEN H L, et al. Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron(nZVI) in porous media[J]. Chemical Engineering Journal, 2011, 170(2-3):482-491.
|
[51] |
WANG X Y, WANG P, MA J, et al. Synthesis, characterization, and reactivity of cellulose modified nanozero-valent iron for dye discoloration[J]. Applied Surface Science, 2015, 345:57-66.
|
[52] |
WANG X Y, LI F, YANG J C. Polyvinyl pyrrolidone-modified Pd/Fe nanoparticles for enhanced dechlorination of 2,4-dichlorophenal[J]. Desalination and Water Treatment, 2014, 52(40-42):7925-7936.
|
[53] |
CAO J, XU R F, TANG H, et al. Synthesis of monodispersed CMC-stabilized Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1, 2, 4-trichlorobenzene[J]. Science of the Total Environment, 2011, 409:2336-2341.
|
[54] |
LOVLEY D R. Microbial Fe(Ⅲ) reduction in subsurface environments[J]. Fems Microbiology Reviews, 1997, 20(3-4):305-313.
|
[55] |
SHIN H Y, SINGHAL N, PARK J W. Regeneration of iron for trichloroethylene reduction by shewanella alga BrY[J]. Chemosphere, 2007, 68(6):1129-1134.
|
[56] |
TOSCO T, GASTONE F, SETHI R, et al. Guar gum solutions for improved delivery of iron particles in porous media(Part 2):Iron transport tests and modeling in radial geometry[J]. Journal of Contaminant Hydrology, 2014, 166:34-51.
|
[57] |
KOCUR C M D, LOMHEIM L, BOPARAI H K, et al. Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection[J]. Environmental Science & Technology, 2015, 49(14):8648-8656.
|
[58] |
LUNA M, GASTONE F, TOSCO T, et al. Pressure-controlled injection of guar gum stabilized microscale zero valent iron for groundwater remediation[J]. Journal of Contaminant Hydrology, 2015, 181:46-58.
|