-
随着溴代阻燃剂(brominated flame retardants, BFRs)被列为持久性有机污染物被禁用或受管控[1],有机磷阻燃剂(organophosphate flame retardants, OPFRs)因其良好的阻燃性能作为BFRs的替代品产量逐年增加[2-4]. 有机磷酸酯(organophosphate esters, OPEs)是一类以磷酸基团为中心,连接不同取代基的化合物,是当前使用量较大的一类OPFRs. 2013年,全球OPEs的年产量达到了62万吨,占到阻燃剂总市场的30%[5]. OPEs还可以作为增塑剂、消泡剂等广泛应用于电子产品、纺织、建筑材料和聚氨酯泡沫等商品生产中[2].
根据取代基不同,OPEs通常被分为烷基取代、芳香基取代和卤代烷基取代等3类,其理化性质因其取代基不同而存在较大差异. 几类目前环境中常检测到的OPEs的理化性质见表1. OPEs作为一类添加型阻燃剂,极易在其生产、使用中经挥发、浸出和机械磨损等过程释放到环境中[2]. 目前,已在水体[6-7]、沉积物[8]、灰尘[9]、土壤[10]等各类环境介质,甚至在极地环境中检测到OPEs[11]. 研究发现,OPEs可以被动物[12-13]和植物[14-16]吸收、积累,对人体和水生生物具有内分泌干扰效应[17],发育[18]、生殖[19]和神经毒性[20]等. OPEs还影响植物光合作用[21],干扰植物脂质代谢[22].
土壤是OPEs赋存的一个重要“汇”,例如,在某塑料制品废弃物处理厂周边农田土壤中OPEs的总浓度高达1250 ng·g-1[14]. 植物作为初级生产者是陆地食物链的重要组成部分[23],也是有机污染物的重要存储体,植物对OPEs吸收、积累和迁移是了解其随食物链传递潜力的基础. OPEs在植物体内的归趋如图1A所示,通常包括吸收、分布、积累、代谢和分泌等过程. 土壤和大气中的OPEs可以被植物根系和叶片吸收并迁移至其他组织[14],还可以在植物体内发生代谢转化,其转化产物的毒性可能较母体化合物更高[24],最后大部分OPEs及其转化产物会积累在植物的不同组织中或少量被根系向外部环境中分泌[25]. 因此,探明植物根系对OPEs吸收、积累、迁移以及OPEs在植物体内的转化为今后OPEs的环境归趋、健康风险评价等研究起到一定指导作用,还可为被OPEs污染区域的植物修复提供理论基础. 本文重点综述了OPEs的植物根系吸收过程及其在植物组织器官归趋,系统分析和整理了影响OPEs在植物中归趋的因素,阐明了OPEs的转化过程及机制,并对目前仍存在的问题及未来的研究关注方向进行总结和展望.
有机磷酸酯在植物体内的吸收、积累、迁移与转化研究进展
Uptake, accumulation, translocation and transformation of organophosphate esters (OPEs) in plants: A review
-
摘要: 有机磷酸酯(organophosphate esters,OPEs)在各类环境介质中被频繁检出,且对生态系统和人体健康存在潜在危害,其环境归趋已成为环境科学领域的热点问题. 植物作为陆生食物链的重要环节,也是污染物的重要存储体之一,关于植物体吸收、积累OPEs及其在植物体内迁移转化的研究,对明确OPEs的环境行为、评价其生态风险以及科学使用和管理具有重要意义. 本文就近年来关于OPEs在植物体内归趋的研究进行汇总,综述了植物吸收OPEs的主要方式、积累以及OPEs在植物体内的迁移与转化行为及其影响因素,并展望了未来研究趋势和发展方向. OPEs主要通过被动扩散被根系吸收;辛醇-水分配系数(octanol-water partition coefficient,Kow)是影响植物吸收、积累和迁移OPEs的关键因素,植物根系对lg Kow值为3.5—9.5间的OPEs吸收速率更快;lg Kow<3的OPEs更易通过植物木质部和韧皮部进行运输. OPEs在植物中的吸收、积累和迁移还受植物根系的蛋白质、脂质含量以及蒸腾能力等生理状况的差异影响. OPEs在植物体内会发生Ⅰ相和Ⅱ相代谢过程,磷酸三酯水解成对应的磷酸二酯是OPEs在植物中的主要转化途径,酸性磷酸酶是参与植物体内OPEs水解反应的关键性酶,细胞色素P450酶和谷胱甘肽S-转移酶也能有效促进OPEs在植物中的转化.Abstract: The fate and environmental behavior of organophosphate esters (OPEs) have gained more attention because OPEs was detected frequently in variety of environmental media and have potential adverse effects on ecosystem and humans. Plants as the main part in terrestrial food chain is one of the most important sinks for pollutants in environment. The understanding of uptake, accumulation, translocation and transformation of OPEs in plants is critical to evaluate their ecological risk and manage their use scientifically. The uptake, accumulation and translocation of OPEs in plants and transformation pathways summarized based on recent researches in this paper. The prospective researches in the future was also proposed. OPEs absorbed by roots mainly through passive diffusion, which influenced by the octanol-water partition coefficient (Kow). OPEs with lg Kow values ranging from 3.5 to 9.5 could be absorbed more easily by root. OPEs with lg Kow < 3 could translocate more easily in the plant xylem and phloem. The physicochemical properties of OPEs, plant physiological characteristics and environmental factors could influence the uptake, accumulation and translocation of OPEs in plants. Hydrolysis was the primary transformation pathway of OPEs in plants. Acid phosphatase was the key enzyme involved in the hydrolysis of OPEs, and cytochrome P450 and glutathione S-transferase also effectively promoted the transformation of OPEs in plants.
-
Key words:
- organophosphate esters /
- plants /
- uptake /
- accumulation /
- translocation /
- transformation.
-
表 1 常见OPEs的理化性质
Table 1. Physicochemical properties of OPEs
类别
ClassificationCAS 中文名称
Chinese name英文名及简称
Name and abbreviationlg Kow Sw/(mg·L−1 )
(25 ℃)Vp/mm Hg
(25 ℃)分子结构
Structure烷基OPEs 512-56-1 磷酸三甲酯 Trimethyl phosphate(TMP) −0.65 5×105 0.415 78-40-0 磷酸三乙酯 Triethyl phosphate(TEP) 0.80 5×105 0.165 513-08-6 磷酸三丙酯 Tripropyl phosphate(TnPP)) 1.87 16.22 0.0231 513-02-0 磷酸三异
丙基酯Triisopropyl phosphate(TiPP) 2.12 501.1 0.138 126-73-8 磷酸三丁酯 Tri- n -butyl phosphate(TnBP) 4.00 280 3.49×10-3 126-71-6 磷酸三异丁酯 Tri- iso -butyl phosphate(TiBP) 3.60 16.22 0.0128 2528−38-3 磷酸三戊酯 tripentyl phosphate(TPTP) 5.29 0.3318 1.67×10−5 烷基OPEs 78-42-2 磷酸三(-2-乙基己基)酯 Tris(2-ethylhexyl) phosphate(TEHP) 9.49 0.6 6.07×10−7 78-51-3 磷酸三(丁氧基乙基)酯 Tris(2-butoxyethyl) phosphate(TBOEP) 3.75 1 100 1.23×10−6 芳香基OPEs 115-86-6 磷酸三苯酯 Triphenyl phosphate(TPhP) 4.59 1.9 4.72×10−7 78-32-0 磷酸三对甲苯酯 Tri-p−cresyl phosphate(TpCrP) 6.34 0.3 3.49×10−8 563-04-2 磷酸三间甲苯酯 Tri-m−cresyl phosphate(TmCrP) 6.34 0.01837 1.09×10−7 78-30-8 磷酸三邻甲苯酯 Tri-o−cresyl phosphate(ToCrP) 5.11 0.36 0.0121 1241−94-7 磷酸二苯基异辛酯 2-Ethylhexyl diphenyl phosphate(EHDPP) 5.73 1.9 3.34×10−5 57583−54-7 间苯二酚四苯基二磷酸酯 Tetraphenyl resorcinol-bis(diphenylphosphate)(RDP) 7.41 1.113×10−4 2.06×10−8 卤代烷基OPEs 126-72-7 磷酸三(2,3-二溴丙基)酯 Tris(2,3-dibromopropyl)phosphate(TDBPP) 4.29 8 8.76×10−8 115-96-8 磷酸三(2-氯乙基)酯 Tris(2-chloroethyl) phosphate(TCEP) 1.44 7 000 3.91×10−4 13674−84-5 磷酸三(2-氯丙基)酯 Tris(2-chloroisopropyl) phosphate(TCPP) 2.59 1 200 5.64×10−5 13674−87-8 磷酸三(1,3-二氯异丙基)酯 Tris(1,3-dichloro-2-propyl) phosphate(TDCPP) 3.65 7 2.86×10−7 38051−10-4 2,2-双氯甲基-三亚甲基-双[双(2-氯乙基)磷酸脂] 2,2-bis(chloromethyl)trimethylene bis(bis(2-chloroethyl) phosphate)(V6) 3.31 0.312 2.06×10−8 注:Sw表示水中的溶解度;Vp表示饱和蒸汽压;lg Kow、 Sw和Vp由 US EPA EPI SuiteTM (2018, version 4.11, USA) 计算得到.
Note: Sw, Water solubility; Vp, Vapor pressure; The data are compiled from US EPA EPISuiteTM (2018, version 4.11, USA).表 2 不同因素对植物根系吸收和积累OPEs的影响
Table 2. Effects of different factors on uptake and accumulation of OPEs in plant roots
影响因素
Factor生长环境
Growth medium培养时间
Cultivation time变量
Parameter化合物
Compound植物种类
Plant species结论
Conclusion参考文献
ReferenceOPEs理化性质 lg Kow 水培 240 h 1.44—4.59 TCEP、TnBP和TPhP 小麦 OPEs的lg Kow越高植物根系对其的吸收速率越快. lg Kow < 2的亲水OPEs主要在细胞液中富集,lg Kow > 4的OPEs主要富集在细胞壁及脂肪含量高的细胞器中. [31] 水培 240 h 1.44—5.73 TCEP、TCPP、TDCPP、TiBP、TnBP、TBEP、TPhP和EHDPP 小麦 [35] 水培 48 h 2.59—9.49 TCPP、TBOEP、TPhP和TEHP 小麦、胡萝卜、生菜和绿豆 [32] 自然环境土壤 — 1.44—5.73 TCEP、TCPP、TiBP、TnBP、TBEP、TPhP、TCP和EHDPP 小麦 [14] 取代基种类 自然环境土壤 — 氯代烷基、烷基和芳香基 18种OPEs 盐地碱蓬 随时间的延长,氯代烷基OPEs在植物中的积累量高于烷基和芳香基OPEs. [40] 土培 72 d ER-OPEs和OC-OPEs 12种OPEs 胡萝卜、西葫芦、大豆、生菜、西红柿和玉米 ER-OPEs的富电子结构和植物根表电荷之间的非共价相互作用使ER-OPEs更容易被植物根部吸收. [37] 链长及取代基数量 水培 10 d 氯代烷基、烷基、芳香基 14种OPEs 小麦 OPEs在根系的积累随链长和取代基数量的增加而增加. [34] 植物生理特性 蛋白质/(mg·g−1 ww) 水培 48 h 根:5.46—15.9 TPhP和TEHP 胡萝卜、绿豆、生菜和小麦 蒸腾作用越强的植物其根系对亲水OPEs的吸收速率越快,而疏水OPEs则更易与植物根中的蛋白质结合被根系吸收,并最终富集在脂质中. [32] 茎叶: 10.7—15.4 生菜、绿豆、胡萝卜和小麦 水培 240 h — TCEP、TCPP、TDCPP、TiBP、TnBP、TBEP、TPhP和EHDPP 小麦 [35] 蒸腾能力/(g·d−1) 水培 48 h 0.23—2.29 TCPP和TBOEP 生菜、小麦、绿豆和胡萝卜 [32] 脂质/(mg·g−1 ww) 水培 48 h 根:25.9—191 TCPP、TBOEP、TPhP和TEHP 小麦、生菜、胡萝卜和绿豆 [32] 茎叶:36.8—51.2 小麦、生菜、胡萝卜和绿豆 环境条件 TOC 再生水浇灌的土壤 — 0.4%—6% TCEP、TCPP和TDCPP 生菜和草莓 土壤TOC含量的增加导致OPEs生物可利用度降低 [25] 重金属和pH 土培 72 d Cu离子浓度:0—1600 mg·kg−1
赤红壤pH: 4.47
暗棕壤pH: 6.1212种不同取代基的OPEs 胡萝卜、西葫芦、大豆、生菜、西红柿和玉米 酸性土壤导致土壤有效态重金属含量增加、植物根系受损,进而促进植物根部对OPEs的吸收. [37] -
[1] ALAEE M, ARIAS P, SJÖDIN A, et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release [J]. Environment International, 2003, 29(6): 683-689. doi: 10.1016/S0160-4120(03)00121-1 [2] VAN DER VEEN I, DE BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067 [3] REEMTSMA T, QUINTANA J B, RODIL R, et al. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate [J]. TrAC Trends in Analytical Chemistry, 2008, 27(9): 727-737. doi: 10.1016/j.trac.2008.07.002 [4] WANG X W, LIU J F, YIN Y G. The pollution status and research progress on organophosphate ester flame retardants [J]. Progress in Chemistry, 2010, 22(10): 1983-1992. [5] SüHRING R, DIAMOND M L, SCHERINGER M, et al. Organophosphate esters in Canadian arctic air: Occurrence, levels and trends [J]. Environmental Science & Technology, 2016, 50(14): 7409-7415. [6] LEE S, JEONG W, KANNAN K, et al. Occurrence and exposure assessment of organophosphate flame retardants (OPFRs) through the consumption of drinking water in Korea [J]. Water Research, 2016, 103: 182-188. doi: 10.1016/j.watres.2016.07.034 [7] WANG R M, TANG J H, XIE Z Y, et al. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, north China [J]. Environmental Pollution, 2015, 198: 172-178. doi: 10.1016/j.envpol.2014.12.037 [8] CAO D D, GUO J H, WANG Y W, et al. Organophosphate esters in sediment of the Great Lakes [J]. Environmental Science & Technology, 2017, 51(3): 1441-1449. [9] ALI N, EQANI S, ISMAIL I M I, et al. Brominated and organophosphate flame retardants in indoor dust of Jeddah, Kingdom of Saudi Arabia: Implications for human exposure [J]. Science of the Total Environment, 2016, 569/570: 269-277. doi: 10.1016/j.scitotenv.2016.06.093 [10] CUI K Y, WEN J X, ZENG F, et al. Occurrence and distribution of organophosphate esters in urban soils of the subtropical city, Guangzhou, China [J]. Chemosphere, 2017, 175: 514-520. doi: 10.1016/j.chemosphere.2017.02.070 [11] HALLANGER I G, SAGERUP K, EVENSET A, et al. Organophosphorous flame retardants in biota from Svalbard, Norway [J]. Marine Pollution Bulletin, 2015, 101(1): 442-447. doi: 10.1016/j.marpolbul.2015.09.049 [12] CHOO G, CHO H S, PARK K, et al. Tissue-specific distribution and bioaccumulation potential of organophosphate flame retardants in crucian carp [J]. Environmental Pollution, 2018, 239: 161-168. doi: 10.1016/j.envpol.2018.03.104 [13] GREAVES A K, LETCHER R J. Comparative body compartment composition and In Ovo transfer of organophosphate flame retardants in North American Great Lakes herring gulls [J]. Environmental Science & Technology, 2014, 48(14): 7942-7950. [14] WAN W N, ZHANG S Z, HUANG H L, et al. Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China [J]. Environmental Pollution, 2016, 214: 349-353. doi: 10.1016/j.envpol.2016.04.038 [15] REN G F, CHU X D, ZHANG J, et al. Organophosphate esters in the water, sediments, surface soils, and tree bark surrounding a manufacturing plant in north China [J]. Environmental Pollution, 2019, 246: 374-380. doi: 10.1016/j.envpol.2018.12.020 [16] LI W H, WANG Y, KANNAN K. Occurrence, distribution and human exposure to 20 organophosphate esters in air, soil, pine needles, river water, and dust samples collected around an airport in New York state, United States [J]. Environment International, 2019, 131: 105054. doi: 10.1016/j.envint.2019.105054 [17] GREAVES A K, LETCHER R J. A review of organophosphate esters in the environment from biological effects to distribution and fate [J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(1): 2-7. doi: 10.1007/s00128-016-1898-0 [18] FU J, HAN J, ZHOU B S, et al. Toxicogenomic responses of zebrafish embryos/larvae to tris(1, 3-dichloro-2-propyl) phosphate (TDCPP) reveal possible molecular mechanisms of developmental toxicity [J]. Environmental Science & Technology, 2013, 47(18): 10574-10582. [19] HUANG Y Y, LIU J, YU L Q, et al. Gonadal impairment and parental transfer of tris (2-butoxyethyl) phosphate in zebrafish after long-term exposure to environmentally relevant concentrations [J]. Chemosphere, 2019, 218: 449-457. doi: 10.1016/j.chemosphere.2018.11.139 [20] SUN L W, XU W B, PENG T, et al. Developmental exposure of zebrafish larvae to organophosphate flame retardants causes neurotoxicity [J]. Neurotoxicology and Teratology, 2016, 55: 16-22. doi: 10.1016/j.ntt.2016.03.003 [21] ZHANG K M, SHEN Y, ZHOU X Q, et al. Photosynthetic electron-transfer reactions in the gametophyte of Pteris multifida reveal the presence of allelopathic interference from the invasive plant species Bidens pilosa [J]. Journal of Photochemistry and Photobiology B:Biology, 2016, 158: 81-88. doi: 10.1016/j.jphotobiol.2016.02.026 [22] LIU Q, LIU M L, WU S H, et al. Metabolomics reveals antioxidant stress responses of wheat (Triticum aestivum L. ) exposed to chlorinated organophosphate esters [J]. Journal of Agricultural and Food Chemistry, 2020, 68(24): 6520-6529. doi: 10.1021/acs.jafc.0c01397 [23] VAN RIJN P C J, VAN HOUTEN Y M, SABELIS M W. How plants benefit from providing food to predators even when it is also edible to herbivores [J]. Ecology, 2002, 83(10): 2664-2679. doi: 10.1890/0012-9658(2002)083[2664:HPBFPF]2.0.CO;2 [24] KOJIMA H, TAKEUCHI S, VAN DEN EEDE N, et al. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors [J]. Toxicology Letters, 2016, 245: 31-39. doi: 10.1016/j.toxlet.2016.01.004 [25] HYLAND K C, BLAINE A C, DICKENSON E R V, et al. Accumulation of contaminants of emerging concern in food crops—part 1: Edible strawberries and lettuce grown in reclaimed water [J]. Environmental Toxicology and Chemistry, 2015, 34(10): 2213-2221. doi: 10.1002/etc.3066 [26] RYAN J A, BELL R M, DAVIDSON J M, et al. Plant uptake of non-ionic organic chemicals from soils [J]. Chemosphere, 1988, 17(12): 2299-2323. doi: 10.1016/0045-6535(88)90142-7 [27] SU Y H, LIU T, LIANG Y C. Transport via xylem of trichloroethylene in wheat, corn, and tomato seedlings [J]. Journal of Hazardous Materials, 2010, 182(1-3): 472-476. doi: 10.1016/j.jhazmat.2010.06.055 [28] ENDO H, TORII K U. Stomatal development and perspectives toward agricultural improvement [J]. Cold Spring Harbor Perspectives in Biology, 2019, 11(5): a034660. doi: 10.1101/cshperspect.a034660 [29] MOECKEL C, THOMAS G O, BARBER J L, et al. Uptake and storage of PCBs by plant cuticles [J]. Environmental Science & Technology, 2008, 42(1): 100-105. [30] MILLER E L, NASON S L, KARTHIKEYAN K G, et al. Root uptake of pharmaceuticals and personal care product ingredients [J]. Environmental Science & Technology, 2016, 50(2): 525-541. [31] GONG X Y, WANG Y, PU J, et al. The environment behavior of organophosphate esters (OPEs) and di-esters in wheat (Triticum aestivum L. ): Uptake mechanism, in vivo hydrolysis and subcellular distribution [J]. Environment International, 2020, 135: 105405. doi: 10.1016/j.envint.2019.105405 [32] LIU Q, WANG X L, YANG R Y, et al. Uptake kinetics, accumulation, and long-distance transport of organophosphate esters in plants: Impacts of chemical and plant properties [J]. Environmental Science & Technology, 2019, 53(9): 4940-4947. [33] LIU Q, WANG X L, ZHOU J, et al. Phosphorus deficiency promoted hydrolysis of organophosphate esters in plants: Mechanisms and transformation pathways [J]. Environmental Science & Technology, 2021, 55(14): 9895-9904. [34] WANG Q Z, ZHAO H X, XU L, et al. Uptake and translocation of organophosphate flame retardants (OPFRs) by hydroponically grown wheat (Triticum aestivum L. ) [J]. Ecotoxicology and Environmental Safety, 2019, 174: 683-689. doi: 10.1016/j.ecoenv.2019.03.029 [35] WAN W N, HUANG H L, LV J T, et al. Uptake, translocation, and biotransformation of organophosphorus esters in wheat (Triticum aestivum L. ) [J]. Environmental Science & Technology, 2017, 51(23): 13649-13658. [36] SWEETMAN A J, VALLE M D, PREVEDOUROS K, et al. The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): Interpreting and modelling field data [J]. Chemosphere, 2005, 60(7): 959-972. doi: 10.1016/j.chemosphere.2004.12.074 [37] 胡蓓蓓. 有机磷酸酯(OPEs)在土壤-植物系统中的吸收、转运和迁移行为研究[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2021: 58-96. HU B B. Studies on the uptake, transformation and migration of organophosphorus esters(OPEs) in the soil-plant systems[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2021: 58-96 (in Chinese) .
[38] DENG S Q, KE T, WU Y F, et al. Heavy metal exposure alters the uptake behavior of 16 priority polycyclic aromatic hydrocarbons (PAHs) by pak choi (Brassica chinensis L. ) [J]. Environmental Science & Technology, 2018, 52(22): 13457-13468. [39] CAMPANELLAAND B, PAUL R. Presence, in the rhizosphere and leaf extracts of zucchini (Cucurbita pepo L. ) and melon (Cucumis melo L. ), of molecules capable of increasing the apparent aqueous solubility of hydrophobic pollutants [J]. International Journal of Phytoremediation, 2000, 2(2): 145-158. doi: 10.1080/15226510008500036 [40] WANG Q Z, ZHAO H X, BEKELE T G, et al. Organophosphate esters (OPEs) in wetland soil and Suaeda salsa from intertidal Laizhou Bay, North China: Levels, distribution, and soil-plant transfer model [J]. Science of the Total Environment, 2021, 764: 142891. doi: 10.1016/j.scitotenv.2020.142891 [41] WANG G W, CHEN H Y, DU Z K, et al. In vivo metabolism of organophosphate flame retardants and distribution of their main metabolites in adult zebrafish [J]. Science of the Total Environment, 2017, 590-591: 50-59. doi: 10.1016/j.scitotenv.2017.03.038 [42] CHEN L, ZHANG S Z, HUANG H L, et al. Partitioning of phenanthrene by root cell walls and cell wall fractions of wheat (Triticum aestivum L. ) [J]. Environmental Science & Technology, 2009, 43(24): 9136-9141. [43] 樊芸. 两种植物生命周期内对疏水性有机污染物的吸收及累积[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2021: 75-107. FAN Y. Uptake and accumulation of hydrophobic organic contaminants into two plants during the whole life[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2021: 75-107 (in Chinese).
[44] 鲍美君. 典型农田有机磷酸酯和邻苯二甲酸酯的污染特征、植物富集和生态风险[D]. 大连: 大连理工大学, 2021: 42-59. BAO M J. Characterization, bioconcentration and ecological risk assessment of organophosphate esters and phthalates in farmlands[D]. Dalian: Dalian University of Technology, 2021: 42-59 (in Chinese).
[45] CRISTALE J, ÁLVAREZ-MARTíN A, RODRíGUEZ-CRUZ S, et al. Sorption and desorption of organophosphate esters with different hydrophobicity by soils [J]. Environmental Science and Pollution Research, 2017, 24(36): 27870-27878. doi: 10.1007/s11356-017-0360-0 [46] ZHONG M Y, WU H F, MI W Y, et al. Occurrences and distribution characteristics of organophosphate ester flame retardants and plasticizers in the sediments of the Bohai and Yellow Seas, China [J]. Science of the Total Environment, 2018, 615: 1305-1311. doi: 10.1016/j.scitotenv.2017.09.272 [47] COLLINS C, FRYER M, GROSSO A. Plant uptake of non ionic organic chemicals [J]. Environmental Science & Technology, 2006, 40(1): 45-52. [48] DEVINE M D, BESTMAN H D, VANDEN BORN W H. Uptake and accumulation of the herbicides chlorsulfuron and clopyralid in excised pea root tissue [J]. Plant Physiology, 1987, 85(1): 82-86. doi: 10.1104/pp.85.1.82 [49] HYLAND K C, BLAINE A C, HIGGINS C P. Accumulation of contaminants of emerging concern in food crops-part 2: Plant distribution [J]. Environmental Toxicology and Chemistry, 2015, 34(10): 2222-2230. doi: 10.1002/etc.3068 [50] THOMPSON M V. Phloem: the long and the short of it [J]. Trends in Plant Science, 2006, 11(1): 26-32. doi: 10.1016/j.tplants.2005.11.009 [51] TURGEON R. The puzzle of phloem pressure [J]. Plant Physiology, 2010, 154(2): 578-581. doi: 10.1104/pp.110.161679 [52] 张俪倢. 水稻对典型有机磷酸酯的吸收、迁移及转化研究[D]. 大连: 大连理工大学, 2021: 29-45. ZHANG L J. Uptake, translocation, and biotransformation of organophosphate esters in rice(Oryza sativa L. )[D]. Dalian: Dalian University of Technology, 2021: 29-45 (in Chinese).
[53] EGGEN T, HEIMSTAD E S, STUANES A O, et al. Uptake and translocation of organophosphates and other emerging contaminants in food and forage crops [J]. Environmental Science and Pollution Research, 2013, 20(7): 4520-4531. doi: 10.1007/s11356-012-1363-5 [54] HU B B, JIANG L F, ZHENG Q, et al. Uptake and translocation of organophosphate esters by plants: Impacts of chemical structure, plant cultivar and copper [J]. Environment International, 2021, 155: 106591. doi: 10.1016/j.envint.2021.106591 [55] LIU T, LU S Y, WANG R W, et al. Behavior of selected organophosphate flame retardants (OPFRs) and their influence on rhizospheric microorganisms after short-term exposure in integrated vertical-flow constructed wetlands (IVCWs) [J]. Science of the Total Environment, 2020, 710: 136403. doi: 10.1016/j.scitotenv.2019.136403 [56] WILD E, DENT J, THOMAS G O, et al. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots [J]. Environmental Science & Technology, 2005, 39(10): 3695-3702. [57] BURKEN J G, SCHNOOR J L. Predictive relationships for uptake of organic contaminants by hybrid poplar trees [J]. Environmental Science & Technology, 1998, 32(21): 3379-3385. [58] BLAINE A C, RICH C D, SEDLACKO E M, et al. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils [J]. Environmental Science & Technology, 2014, 48(14): 7858-7865. [59] BIZKARGUENAGA E, ZABALETA I, MIJANGOS L, et al. Uptake of perfluorooctanoic acid, perfluorooctane sulfonate and perfluorooctane sulfonamide by carrot and lettuce from compost amended soil [J]. Science of the Total Environment, 2016, 571: 444-451. doi: 10.1016/j.scitotenv.2016.07.010 [60] SUGA S, MURAI M, KUWAGATA T, et al. Differences in aquaporin levels among cell types of radish and measurement of osmotic water permeability of individual protoplasts [J]. Plant and Cell Physiology, 2003, 44(3): 277-286. doi: 10.1093/pcp/pcg032 [61] WANG Z Y, XIE X Y, ZHAO J, et al. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L. ) [J]. Environmental Science & Technology, 2012, 46(8): 4434-4441. [62] BUHTZ A, KOLASA A, ARLT K, et al. Xylem sap protein composition is conserved among different plant species [J]. Planta, 2004, 219(4): 610-618. [63] SU G Y, CRUMP D, LETCHER R J, et al. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes [J]. Environmental Science & Technology, 2014, 48(22): 13511-13519. [64] WANG G W, DU Z K, CHEN H Y, et al. Tissue-specific accumulation, depuration, and transformation of triphenyl phosphate (TPHP) in adult zebrafish (Danio rerio) [J]. Environmental Science & Technology, 2016, 50(24): 13555-13564. [65] VAN DEN EEDE N, MAHO W, ERRATICO C, et al. First insights in the metabolism of phosphate flame retardants and plasticizers using human liver fractions [J]. Toxicology Letters, 2013, 223(1): 9-15. doi: 10.1016/j.toxlet.2013.08.012 [66] DODSON R E, VAN DEN EEDE N, COVACI A, et al. Urinary biomonitoring of phosphate flame retardants: Levels in California adults and recommendations for future studies [J]. Environmental Science & Technology, 2014, 48(23): 13625-13633. [67] 侯兴旺, 刘稷燕, 江桂斌. 典型卤代有机污染物在植物体内的代谢过程 [J]. 中国科学:化学, 2018, 48(10): 1236-1246. doi: 10.1360/N032018-00077 HOU X W, LIU J Y, JIANG G B. Metabolism of typical halogenated organic pollutants in plants [J]. Scientia Sinica Chimica), 2018, 48(10): 1236-1246(in Chinese). doi: 10.1360/N032018-00077
[68] SANDERMANN H Jr. Higher plant metabolism of xenobiotics: The ‘green liver’ concept [J]. Pharmacogenetics, 1994, 4(5): 225-241. doi: 10.1097/00008571-199410000-00001 [69] COLEMAN J, BLAKE-KALFF M, DAVIES E. Detoxification of xenobiotics by plants: Chemical modification and vacuolar compartmentation [J]. Trends in Plant Science, 1997, 2(4): 144-151. doi: 10.1016/S1360-1385(97)01019-4 [70] COLE D J. Detoxification and activation of agrochemicals in plants [J]. Pesticide Science, 1994, 42(3): 209-222. doi: 10.1002/ps.2780420309 [71] REA P A. Plant ATP-binding cassette transporters [J]. Annual Review of Plant Biology, 2007, 58: 347-375. doi: 10.1146/annurev.arplant.57.032905.105406 [72] XU J, WANG X Y, GUO W Z. The cytochrome P450 superfamily: Key players in plant development and defense [J]. Journal of Integrative Agriculture, 2015, 14(9): 1673-1686. doi: 10.1016/S2095-3119(14)60980-1 [73] BALLESTEROS-GÓMEZ A, ERRATICO C A, VAN DEN EEDE N, et al. In vitro metabolism of 2-ethylhexyldiphenyl phosphate (EHDPHP) by human liver microsomes [J]. Toxicology Letters, 2015, 232(1): 203-212. doi: 10.1016/j.toxlet.2014.11.007 [74] WINK M. Annual plant reviews volume 40: biochemistry of plant secondary metabolism[M]. Second Edition. Oxford: WILEY-BLACKWELL, 2010: 1-19. [75] LU Y P, LI Z S, REA P A. AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: Isolation and functional definition of a plant ATP-binding cassette transporter gene [J]. Proceedings of the National Academy of Sciences, 1997, 94(15): 8243-8248. doi: 10.1073/pnas.94.15.8243