[1] |
ALAEE M, ARIAS P, SJÖDIN A, et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release [J]. Environment International, 2003, 29(6): 683-689. doi: 10.1016/S0160-4120(03)00121-1
|
[2] |
VAN DER VEEN I, DE BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067
|
[3] |
REEMTSMA T, QUINTANA J B, RODIL R, et al. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate [J]. TrAC Trends in Analytical Chemistry, 2008, 27(9): 727-737. doi: 10.1016/j.trac.2008.07.002
|
[4] |
WANG X W, LIU J F, YIN Y G. The pollution status and research progress on organophosphate ester flame retardants [J]. Progress in Chemistry, 2010, 22(10): 1983-1992.
|
[5] |
SüHRING R, DIAMOND M L, SCHERINGER M, et al. Organophosphate esters in Canadian arctic air: Occurrence, levels and trends [J]. Environmental Science & Technology, 2016, 50(14): 7409-7415.
|
[6] |
LEE S, JEONG W, KANNAN K, et al. Occurrence and exposure assessment of organophosphate flame retardants (OPFRs) through the consumption of drinking water in Korea [J]. Water Research, 2016, 103: 182-188. doi: 10.1016/j.watres.2016.07.034
|
[7] |
WANG R M, TANG J H, XIE Z Y, et al. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, north China [J]. Environmental Pollution, 2015, 198: 172-178. doi: 10.1016/j.envpol.2014.12.037
|
[8] |
CAO D D, GUO J H, WANG Y W, et al. Organophosphate esters in sediment of the Great Lakes [J]. Environmental Science & Technology, 2017, 51(3): 1441-1449.
|
[9] |
ALI N, EQANI S, ISMAIL I M I, et al. Brominated and organophosphate flame retardants in indoor dust of Jeddah, Kingdom of Saudi Arabia: Implications for human exposure [J]. Science of the Total Environment, 2016, 569/570: 269-277. doi: 10.1016/j.scitotenv.2016.06.093
|
[10] |
CUI K Y, WEN J X, ZENG F, et al. Occurrence and distribution of organophosphate esters in urban soils of the subtropical city, Guangzhou, China [J]. Chemosphere, 2017, 175: 514-520. doi: 10.1016/j.chemosphere.2017.02.070
|
[11] |
HALLANGER I G, SAGERUP K, EVENSET A, et al. Organophosphorous flame retardants in biota from Svalbard, Norway [J]. Marine Pollution Bulletin, 2015, 101(1): 442-447. doi: 10.1016/j.marpolbul.2015.09.049
|
[12] |
CHOO G, CHO H S, PARK K, et al. Tissue-specific distribution and bioaccumulation potential of organophosphate flame retardants in crucian carp [J]. Environmental Pollution, 2018, 239: 161-168. doi: 10.1016/j.envpol.2018.03.104
|
[13] |
GREAVES A K, LETCHER R J. Comparative body compartment composition and In Ovo transfer of organophosphate flame retardants in North American Great Lakes herring gulls [J]. Environmental Science & Technology, 2014, 48(14): 7942-7950.
|
[14] |
WAN W N, ZHANG S Z, HUANG H L, et al. Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China [J]. Environmental Pollution, 2016, 214: 349-353. doi: 10.1016/j.envpol.2016.04.038
|
[15] |
REN G F, CHU X D, ZHANG J, et al. Organophosphate esters in the water, sediments, surface soils, and tree bark surrounding a manufacturing plant in north China [J]. Environmental Pollution, 2019, 246: 374-380. doi: 10.1016/j.envpol.2018.12.020
|
[16] |
LI W H, WANG Y, KANNAN K. Occurrence, distribution and human exposure to 20 organophosphate esters in air, soil, pine needles, river water, and dust samples collected around an airport in New York state, United States [J]. Environment International, 2019, 131: 105054. doi: 10.1016/j.envint.2019.105054
|
[17] |
GREAVES A K, LETCHER R J. A review of organophosphate esters in the environment from biological effects to distribution and fate [J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(1): 2-7. doi: 10.1007/s00128-016-1898-0
|
[18] |
FU J, HAN J, ZHOU B S, et al. Toxicogenomic responses of zebrafish embryos/larvae to tris(1, 3-dichloro-2-propyl) phosphate (TDCPP) reveal possible molecular mechanisms of developmental toxicity [J]. Environmental Science & Technology, 2013, 47(18): 10574-10582.
|
[19] |
HUANG Y Y, LIU J, YU L Q, et al. Gonadal impairment and parental transfer of tris (2-butoxyethyl) phosphate in zebrafish after long-term exposure to environmentally relevant concentrations [J]. Chemosphere, 2019, 218: 449-457. doi: 10.1016/j.chemosphere.2018.11.139
|
[20] |
SUN L W, XU W B, PENG T, et al. Developmental exposure of zebrafish larvae to organophosphate flame retardants causes neurotoxicity [J]. Neurotoxicology and Teratology, 2016, 55: 16-22. doi: 10.1016/j.ntt.2016.03.003
|
[21] |
ZHANG K M, SHEN Y, ZHOU X Q, et al. Photosynthetic electron-transfer reactions in the gametophyte of Pteris multifida reveal the presence of allelopathic interference from the invasive plant species Bidens pilosa [J]. Journal of Photochemistry and Photobiology B:Biology, 2016, 158: 81-88. doi: 10.1016/j.jphotobiol.2016.02.026
|
[22] |
LIU Q, LIU M L, WU S H, et al. Metabolomics reveals antioxidant stress responses of wheat (Triticum aestivum L. ) exposed to chlorinated organophosphate esters [J]. Journal of Agricultural and Food Chemistry, 2020, 68(24): 6520-6529. doi: 10.1021/acs.jafc.0c01397
|
[23] |
VAN RIJN P C J, VAN HOUTEN Y M, SABELIS M W. How plants benefit from providing food to predators even when it is also edible to herbivores [J]. Ecology, 2002, 83(10): 2664-2679. doi: 10.1890/0012-9658(2002)083[2664:HPBFPF]2.0.CO;2
|
[24] |
KOJIMA H, TAKEUCHI S, VAN DEN EEDE N, et al. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors [J]. Toxicology Letters, 2016, 245: 31-39. doi: 10.1016/j.toxlet.2016.01.004
|
[25] |
HYLAND K C, BLAINE A C, DICKENSON E R V, et al. Accumulation of contaminants of emerging concern in food crops—part 1: Edible strawberries and lettuce grown in reclaimed water [J]. Environmental Toxicology and Chemistry, 2015, 34(10): 2213-2221. doi: 10.1002/etc.3066
|
[26] |
RYAN J A, BELL R M, DAVIDSON J M, et al. Plant uptake of non-ionic organic chemicals from soils [J]. Chemosphere, 1988, 17(12): 2299-2323. doi: 10.1016/0045-6535(88)90142-7
|
[27] |
SU Y H, LIU T, LIANG Y C. Transport via xylem of trichloroethylene in wheat, corn, and tomato seedlings [J]. Journal of Hazardous Materials, 2010, 182(1-3): 472-476. doi: 10.1016/j.jhazmat.2010.06.055
|
[28] |
ENDO H, TORII K U. Stomatal development and perspectives toward agricultural improvement [J]. Cold Spring Harbor Perspectives in Biology, 2019, 11(5): a034660. doi: 10.1101/cshperspect.a034660
|
[29] |
MOECKEL C, THOMAS G O, BARBER J L, et al. Uptake and storage of PCBs by plant cuticles [J]. Environmental Science & Technology, 2008, 42(1): 100-105.
|
[30] |
MILLER E L, NASON S L, KARTHIKEYAN K G, et al. Root uptake of pharmaceuticals and personal care product ingredients [J]. Environmental Science & Technology, 2016, 50(2): 525-541.
|
[31] |
GONG X Y, WANG Y, PU J, et al. The environment behavior of organophosphate esters (OPEs) and di-esters in wheat (Triticum aestivum L. ): Uptake mechanism, in vivo hydrolysis and subcellular distribution [J]. Environment International, 2020, 135: 105405. doi: 10.1016/j.envint.2019.105405
|
[32] |
LIU Q, WANG X L, YANG R Y, et al. Uptake kinetics, accumulation, and long-distance transport of organophosphate esters in plants: Impacts of chemical and plant properties [J]. Environmental Science & Technology, 2019, 53(9): 4940-4947.
|
[33] |
LIU Q, WANG X L, ZHOU J, et al. Phosphorus deficiency promoted hydrolysis of organophosphate esters in plants: Mechanisms and transformation pathways [J]. Environmental Science & Technology, 2021, 55(14): 9895-9904.
|
[34] |
WANG Q Z, ZHAO H X, XU L, et al. Uptake and translocation of organophosphate flame retardants (OPFRs) by hydroponically grown wheat (Triticum aestivum L. ) [J]. Ecotoxicology and Environmental Safety, 2019, 174: 683-689. doi: 10.1016/j.ecoenv.2019.03.029
|
[35] |
WAN W N, HUANG H L, LV J T, et al. Uptake, translocation, and biotransformation of organophosphorus esters in wheat (Triticum aestivum L. ) [J]. Environmental Science & Technology, 2017, 51(23): 13649-13658.
|
[36] |
SWEETMAN A J, VALLE M D, PREVEDOUROS K, et al. The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): Interpreting and modelling field data [J]. Chemosphere, 2005, 60(7): 959-972. doi: 10.1016/j.chemosphere.2004.12.074
|
[37] |
胡蓓蓓. 有机磷酸酯(OPEs)在土壤-植物系统中的吸收、转运和迁移行为研究[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2021: 58-96.
HU B B. Studies on the uptake, transformation and migration of organophosphorus esters(OPEs) in the soil-plant systems[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2021: 58-96 (in Chinese) .
|
[38] |
DENG S Q, KE T, WU Y F, et al. Heavy metal exposure alters the uptake behavior of 16 priority polycyclic aromatic hydrocarbons (PAHs) by pak choi (Brassica chinensis L. ) [J]. Environmental Science & Technology, 2018, 52(22): 13457-13468.
|
[39] |
CAMPANELLAAND B, PAUL R. Presence, in the rhizosphere and leaf extracts of zucchini (Cucurbita pepo L. ) and melon (Cucumis melo L. ), of molecules capable of increasing the apparent aqueous solubility of hydrophobic pollutants [J]. International Journal of Phytoremediation, 2000, 2(2): 145-158. doi: 10.1080/15226510008500036
|
[40] |
WANG Q Z, ZHAO H X, BEKELE T G, et al. Organophosphate esters (OPEs) in wetland soil and Suaeda salsa from intertidal Laizhou Bay, North China: Levels, distribution, and soil-plant transfer model [J]. Science of the Total Environment, 2021, 764: 142891. doi: 10.1016/j.scitotenv.2020.142891
|
[41] |
WANG G W, CHEN H Y, DU Z K, et al. In vivo metabolism of organophosphate flame retardants and distribution of their main metabolites in adult zebrafish [J]. Science of the Total Environment, 2017, 590-591: 50-59. doi: 10.1016/j.scitotenv.2017.03.038
|
[42] |
CHEN L, ZHANG S Z, HUANG H L, et al. Partitioning of phenanthrene by root cell walls and cell wall fractions of wheat (Triticum aestivum L. ) [J]. Environmental Science & Technology, 2009, 43(24): 9136-9141.
|
[43] |
樊芸. 两种植物生命周期内对疏水性有机污染物的吸收及累积[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2021: 75-107.
FAN Y. Uptake and accumulation of hydrophobic organic contaminants into two plants during the whole life[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2021: 75-107 (in Chinese).
|
[44] |
鲍美君. 典型农田有机磷酸酯和邻苯二甲酸酯的污染特征、植物富集和生态风险[D]. 大连: 大连理工大学, 2021: 42-59.
BAO M J. Characterization, bioconcentration and ecological risk assessment of organophosphate esters and phthalates in farmlands[D]. Dalian: Dalian University of Technology, 2021: 42-59 (in Chinese).
|
[45] |
CRISTALE J, ÁLVAREZ-MARTíN A, RODRíGUEZ-CRUZ S, et al. Sorption and desorption of organophosphate esters with different hydrophobicity by soils [J]. Environmental Science and Pollution Research, 2017, 24(36): 27870-27878. doi: 10.1007/s11356-017-0360-0
|
[46] |
ZHONG M Y, WU H F, MI W Y, et al. Occurrences and distribution characteristics of organophosphate ester flame retardants and plasticizers in the sediments of the Bohai and Yellow Seas, China [J]. Science of the Total Environment, 2018, 615: 1305-1311. doi: 10.1016/j.scitotenv.2017.09.272
|
[47] |
COLLINS C, FRYER M, GROSSO A. Plant uptake of non ionic organic chemicals [J]. Environmental Science & Technology, 2006, 40(1): 45-52.
|
[48] |
DEVINE M D, BESTMAN H D, VANDEN BORN W H. Uptake and accumulation of the herbicides chlorsulfuron and clopyralid in excised pea root tissue [J]. Plant Physiology, 1987, 85(1): 82-86. doi: 10.1104/pp.85.1.82
|
[49] |
HYLAND K C, BLAINE A C, HIGGINS C P. Accumulation of contaminants of emerging concern in food crops-part 2: Plant distribution [J]. Environmental Toxicology and Chemistry, 2015, 34(10): 2222-2230. doi: 10.1002/etc.3068
|
[50] |
THOMPSON M V. Phloem: the long and the short of it [J]. Trends in Plant Science, 2006, 11(1): 26-32. doi: 10.1016/j.tplants.2005.11.009
|
[51] |
TURGEON R. The puzzle of phloem pressure [J]. Plant Physiology, 2010, 154(2): 578-581. doi: 10.1104/pp.110.161679
|
[52] |
张俪倢. 水稻对典型有机磷酸酯的吸收、迁移及转化研究[D]. 大连: 大连理工大学, 2021: 29-45.
ZHANG L J. Uptake, translocation, and biotransformation of organophosphate esters in rice(Oryza sativa L. )[D]. Dalian: Dalian University of Technology, 2021: 29-45 (in Chinese).
|
[53] |
EGGEN T, HEIMSTAD E S, STUANES A O, et al. Uptake and translocation of organophosphates and other emerging contaminants in food and forage crops [J]. Environmental Science and Pollution Research, 2013, 20(7): 4520-4531. doi: 10.1007/s11356-012-1363-5
|
[54] |
HU B B, JIANG L F, ZHENG Q, et al. Uptake and translocation of organophosphate esters by plants: Impacts of chemical structure, plant cultivar and copper [J]. Environment International, 2021, 155: 106591. doi: 10.1016/j.envint.2021.106591
|
[55] |
LIU T, LU S Y, WANG R W, et al. Behavior of selected organophosphate flame retardants (OPFRs) and their influence on rhizospheric microorganisms after short-term exposure in integrated vertical-flow constructed wetlands (IVCWs) [J]. Science of the Total Environment, 2020, 710: 136403. doi: 10.1016/j.scitotenv.2019.136403
|
[56] |
WILD E, DENT J, THOMAS G O, et al. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots [J]. Environmental Science & Technology, 2005, 39(10): 3695-3702.
|
[57] |
BURKEN J G, SCHNOOR J L. Predictive relationships for uptake of organic contaminants by hybrid poplar trees [J]. Environmental Science & Technology, 1998, 32(21): 3379-3385.
|
[58] |
BLAINE A C, RICH C D, SEDLACKO E M, et al. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils [J]. Environmental Science & Technology, 2014, 48(14): 7858-7865.
|
[59] |
BIZKARGUENAGA E, ZABALETA I, MIJANGOS L, et al. Uptake of perfluorooctanoic acid, perfluorooctane sulfonate and perfluorooctane sulfonamide by carrot and lettuce from compost amended soil [J]. Science of the Total Environment, 2016, 571: 444-451. doi: 10.1016/j.scitotenv.2016.07.010
|
[60] |
SUGA S, MURAI M, KUWAGATA T, et al. Differences in aquaporin levels among cell types of radish and measurement of osmotic water permeability of individual protoplasts [J]. Plant and Cell Physiology, 2003, 44(3): 277-286. doi: 10.1093/pcp/pcg032
|
[61] |
WANG Z Y, XIE X Y, ZHAO J, et al. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L. ) [J]. Environmental Science & Technology, 2012, 46(8): 4434-4441.
|
[62] |
BUHTZ A, KOLASA A, ARLT K, et al. Xylem sap protein composition is conserved among different plant species [J]. Planta, 2004, 219(4): 610-618.
|
[63] |
SU G Y, CRUMP D, LETCHER R J, et al. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes [J]. Environmental Science & Technology, 2014, 48(22): 13511-13519.
|
[64] |
WANG G W, DU Z K, CHEN H Y, et al. Tissue-specific accumulation, depuration, and transformation of triphenyl phosphate (TPHP) in adult zebrafish (Danio rerio) [J]. Environmental Science & Technology, 2016, 50(24): 13555-13564.
|
[65] |
VAN DEN EEDE N, MAHO W, ERRATICO C, et al. First insights in the metabolism of phosphate flame retardants and plasticizers using human liver fractions [J]. Toxicology Letters, 2013, 223(1): 9-15. doi: 10.1016/j.toxlet.2013.08.012
|
[66] |
DODSON R E, VAN DEN EEDE N, COVACI A, et al. Urinary biomonitoring of phosphate flame retardants: Levels in California adults and recommendations for future studies [J]. Environmental Science & Technology, 2014, 48(23): 13625-13633.
|
[67] |
侯兴旺, 刘稷燕, 江桂斌. 典型卤代有机污染物在植物体内的代谢过程 [J]. 中国科学:化学, 2018, 48(10): 1236-1246. doi: 10.1360/N032018-00077
HOU X W, LIU J Y, JIANG G B. Metabolism of typical halogenated organic pollutants in plants [J]. Scientia Sinica Chimica), 2018, 48(10): 1236-1246(in Chinese). doi: 10.1360/N032018-00077
|
[68] |
SANDERMANN H Jr. Higher plant metabolism of xenobiotics: The ‘green liver’ concept [J]. Pharmacogenetics, 1994, 4(5): 225-241. doi: 10.1097/00008571-199410000-00001
|
[69] |
COLEMAN J, BLAKE-KALFF M, DAVIES E. Detoxification of xenobiotics by plants: Chemical modification and vacuolar compartmentation [J]. Trends in Plant Science, 1997, 2(4): 144-151. doi: 10.1016/S1360-1385(97)01019-4
|
[70] |
COLE D J. Detoxification and activation of agrochemicals in plants [J]. Pesticide Science, 1994, 42(3): 209-222. doi: 10.1002/ps.2780420309
|
[71] |
REA P A. Plant ATP-binding cassette transporters [J]. Annual Review of Plant Biology, 2007, 58: 347-375. doi: 10.1146/annurev.arplant.57.032905.105406
|
[72] |
XU J, WANG X Y, GUO W Z. The cytochrome P450 superfamily: Key players in plant development and defense [J]. Journal of Integrative Agriculture, 2015, 14(9): 1673-1686. doi: 10.1016/S2095-3119(14)60980-1
|
[73] |
BALLESTEROS-GÓMEZ A, ERRATICO C A, VAN DEN EEDE N, et al. In vitro metabolism of 2-ethylhexyldiphenyl phosphate (EHDPHP) by human liver microsomes [J]. Toxicology Letters, 2015, 232(1): 203-212. doi: 10.1016/j.toxlet.2014.11.007
|
[74] |
WINK M. Annual plant reviews volume 40: biochemistry of plant secondary metabolism[M]. Second Edition. Oxford: WILEY-BLACKWELL, 2010: 1-19.
|
[75] |
LU Y P, LI Z S, REA P A. AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: Isolation and functional definition of a plant ATP-binding cassette transporter gene [J]. Proceedings of the National Academy of Sciences, 1997, 94(15): 8243-8248. doi: 10.1073/pnas.94.15.8243
|