-
自20世纪60年代以来,阻燃剂(flame retardants, FRs)常被添加到塑料材料中阻止燃烧,或者延缓火灾的蔓延. 然而,经过40年的发展,在公共健康领域,溴代阻燃剂(brominated flame retardants, BFRs)成为高度关注的焦点,研究者发现部分BFRs具有高毒性、持久性和长距离迁移性,因此,BFRs被逐步禁用或者限制使用[1]. 有机磷酸酯(organophosphate ester, OPEs)成为BFRs的替代品. 据统计,大约有40种OPEs用作阻燃剂和塑料添加剂,应用于建筑、纺织、化工、电子、交通运输以及家装材料等行业. OPEs以有机磷三酯(主要使用形式)、有机磷二酯(有机磷三酯的分解产物)和聚磷酸盐的形式存在,磷酸三酯根据取代基的不同分为卤代烷基、非卤代烷基和芳香基OPEs,通常氯代OPEs被用作阻燃剂、非卤代烷基OPEs被用作增塑剂和消泡剂[2-4]. 近20年来,全球范围内OPEs的需求和产量显著增加[5-6]. 2001年,全球有机磷类物质(OPs)用量总计1.86 × 105 t,其中70%为OPEs. 2016年,OPEs生产量占阻燃剂市场总量的18%,位居阻燃剂市场第二[7]. 2017年,全球阻燃剂消耗量为2.53 × 106 t,其中30%的消费量与磷相关,而2008年仅为11%. 2001年,日本OPEs的使用量为2.2 × 104 t,2005年则增至3.0 × 104 t[8]. 2006年,欧洲阻燃剂总消耗量约为4.65 × 105 t,其中OPEs占比20%. 多数OPEs可被归为欧盟所认定的高产量化学品(high-production volume, HPV),其产量在欧洲每年超过1000 t[9]. 2007年,我国OPEs的年产量接近7.0 × 104 t,且以每年15%的速度增长[10].
OPEs是一类从亲水强极性到强疏水非极性的有机化合物,其辛醇-水分配系数的对数值(lgKOW)在−0.65—9.43范围内,覆盖了多氯联苯(4 < lgKOW < 7)及有机氯农药等化合物的lgKOW值范围. 拥有不同的取代基表现不同的理化性质,芳基取代的OPEs普遍比另外的两类酯(除磷酸三(2-乙基己基)tris(2-ethylhexyl) phosphate, TEHP以外)的疏水性更强,挥发性小,非氯代烷基类则随着分子量增大,其lgKOW也会有增大的趋势,但溶解度和蒸气压等会相应减小. 氯代类OPEs性质差异变化较大可能由于引入氯代基团的缘故. 某些OPEs在大气中的半衰期较长,大于《斯德哥尔摩公约》中大气持久性的阈值(> 2 d)[11],如磷酸三(2-氯乙基)酯(tris(2-chloroethyl) phosphate, TCEP)和磷酸三氯丙酯(tris(2-chloroisopropyl) phosphate, TCPP)已经达到欧盟法规中持久或非常持久化合物的筛选标准[12-13]. 而且,一些研究指出,OPEs具有神经毒性、生殖毒性、致癌性和基因毒性,TCEP已经达到了欧盟关于化学物质致癌性的毒性筛选标准[4-5]. OPEs可以通过摄食和皮肤接触等途径,进入人体,产生负面的健康风险[14]. Liu等[1]发表于《Nature》的研究指出,全球18个大城市的大气中均检出了OPEs及其转化产物,转化产物可能会具有比母体化合物更强的毒性,其持久性也可能大1个数量级,因此转化产物的总风险应当高于母体化合物. 综上所述,OPEs与传统的持久性有机污染物(persistent organic pollutants, POPs)相似,具有持久性、生物蓄积性和毒性.
OPEs主要以物理掺杂混合而非化学键合方式加入到聚合物中,二者的作用力弱,在产品使用周期内和固废处理时,易于通过磨损和渗漏等方式从材料里析出而进入环境. OPEs的半挥发性和持久性导致其具有长距离传输的潜力,在远离人类活动的偏远地区(如高山和极地等地区)也监测到OPEs的存在. 目前,较多的研究报道了OPEs在地表水[15]、沉积物[16]、大气[17]、土壤[18]及生物体[19]等多种环境介质以及人类尿液[20]、血浆[21]、血清[22]、母乳[23]和胎盘[24]等组织中OPEs的含量水平. 由此可见,OPEs的分布范围较广,含量和检出频率较高,且具有明确的毒性,研究OPEs的环境行为及其风险水平具有重要的科学和管理意义.
近年来,有研究者对OPEs的分析方法[25]、水体和室内环境中赋存状况[26]及风险水平[27]、在生物体内的迁移和转化以及生物暴露毒性[28]等方面的进展进行了综述,然而对空气中OPEs的研究进展尚未进行系统总结,从而未能清晰地阐明OPEs的环境归趋和长距离迁移等环境行为以及影响因素的作用机制. 本文将综述近20年的相关研究成果,揭示OPEs在国内外大气环境中的赋存状况,探讨在大气中影响OPEs环境行为的关键因素,并对目前存在的科学问题进行展望.
大气中有机磷酸酯的赋存状况及环境行为
A review on the occurrence and environmental behavior of organophosphate esters (OPEs) as new pollutants in air
-
摘要: 有机磷酸酯(organophosphate esters,OPEs)作为阻燃剂和增塑剂添加在塑料、织物和建筑材料中,其产量逐年递增. OPEs曾经被认为是溴代阻燃剂(BFRs)的有效替代品;然而,最近的研究指出其在大气中的含量比BFRs高1—3个数量级,且某些OPEs化合物半衰期长,具有显著的毒性效应和长距离迁移潜力,因此,OPEs日益成为一类备受关注的全球性新型有机污染物,“更安全”的替代品的认知被质疑. 本文总结了大气中OPEs的赋存状况、气-粒分配、长距离传输和光氧化等方面的研究. 通过比较世界各地区大气OPEs的含量和组成特征发现,工业排放源、长距离传输和气象条件是影响大气中OPEs空间分布趋势的重要因素. 尽管颗粒态对长距离传输、归趋和风险评价具有重要的科学意义,然而,气-粒分配模型研究和实际监测较为缺乏,模型结果和监测计算结果之间差异较大,推测模型的准确性可能受理化性质、气象条件以及采样技术的影响. OPEs在大气中光氧化降解的研究方兴未艾,仍需继续深入发掘多种环境因素的影响,推测降解路径和产物. 因此,将来亟待发展适合OPEs的预测模型,开发新型的采样技术,揭示其光氧化降解路径和产物,以期更好地理解OPEs在大气中的环境赋存和行为规律,为环境质量管理提供理论支持.Abstract: As flame retardants and plasticizers, organophosphate esters (OPEs) have been widely utilized in plastics, textiles, and building materials, and resulted in a sharp increment on production annually. OPEs were ever regarded as effective substitutes for brominated flame retardants (BFRs); however, some current researches showed that their concentrations in air were 1 to 3 orders of magnitude higher than BFRs. Since their half-lives were relatively long, combing their definite toxicity and long-range transport potential, OPEs have increasingly attracted extensive attention and become a class of global organic contaminants. Besides, the recognition of OPEs being safer substitutes is questioned by some researchers. In present study, the progresses on the atmospheric OPEs were reviewed, including the occurrence, the long-range transport, the air-particle partition and the photooxidation of OPEs in air. The deficiency in recent researches was discussed and the perspectives on future study were proposed. Comparing the concentrations and composition characteristics of OPEs in different areas, the industrial sources, long-range transport and meteorological conditions were the predominant factors controlling the spatial distribution tendencies of OPEs in air. The particle-bound OPEs were of remarkable scientific importance in exploring their long-range transport path, revealing their environmental fate and assessing their health risks. However, the researches focusing on air-particle partitions on the basis of field monitoring and theoretical models were relatively insufficient. There was a significant difference between the model results for predicting the percentages of OPEs in particle phase and the field monitoring. It was speculated that the physicochemical properties, meteorological condition and sampling techniques might have influence on the accuracy of models. Moreover, the influence some environment factors on OPEs photooxidation should be explored in order to reveal the reaction paths and proposed the structure of the photodegradation products. Consequently, optimizing proper models, developing new sampling techniques as well as probing the photo-degradation of OPEs were urgent in future for better understanding their environmental behavior and serving the administration of environmental quality.
-
表 1 世界各国大气OPEs浓度水平概况(中位数, ng·m−3 dw)
Table 1. OPEs levels in the atmosphere around the world(median, ng·m−3 dw)
采样点
Location城市/乡村
Urban/ village样品形态
Sample state∑OPEs TCEP TDCPP TCPP TPhP TCP TnBP TiBP TBEP TEHP EHDPP TEP 数据来源
Ref.北京 中国 城市 气+固 2.904 0.202 0.056 2.325 0.165 0.04 0.111 — — — — 0.005 [38] 上海 中国 交通枢纽 TSP 15.5 3.5 0.8 2.9 5.9 — 2.4 — ND — — — [39] 乡村 TSP 4.07 1.8 0.3 1 0.5 0.07 0.4 — ND — — — 广州 中国 工业用地 PM2.5 2.425 0.174 — 1.059 0.298 0.465 0.237 — — 0.111 0.073 0.008 [40] 电子回收区 PM2.5 2.196 0.06 — 0.424 1.143 0.322 0.072 — — 0.085 0.086 0.004 10城市 中国 城市 PM2.5 0.42 0.027 0.257 0.136 — — — — — — — — [41] 南京 中国 城市 TSP 152.63 6.85 2.77 81.99 16.59 2.94 2.82 — 5.35 26.75 2.14 4.43 [42] 乡村 TSP 13.62 1.85 0.8 4.12 1.16 0.12 1.33 — 0.11 1.64 ND 2.49 重庆 中国 乡村 气态 265.58 18.5 0.32 33.6 8.11 — 155 42.5 3.28 4.27 — — [43] 成都 中国 城市 PM2.5 6.4 1.1 0.3 1.0 0.5 — 1.0 — 2.3 0.3 — — [44] 大连 中国 城市 气态 1.05 0.193 0.061 0.681 0.043 — 0.046 — 0.019 0.007 — — [45] 莱茵河畔 德国 城市 气+固 3.13 — — 1.49 — — 0.13 1.51 ND ND — ND [35] 海岸 德国 海洋 气+固 0.056 0.003 0.001 0.01 0.003 0.004 0.006 0.009 0.009 0.011 — — [46] 北海 德国 海洋 气+固 0.389 0.031 — 0.271 0.02 — 0.022 0.035 0.007 0.003 — — [37] 仁德 意大利 乡村 PM10 3.165 — — 2.62 0.244 — 0.301 — — — — — [34] 拉科鲁尼亚 西班牙 城市 PM10 6.72 0.52 ND 1 1.06 ND 1.5 2.4 — ND 0.24 — [47] 斯德哥尔摩 瑞典 城市 气+固 2.504 0.64 0.008 0.87 0.047 — 0.051 — 0.83 ND 0.058 — [48] 纽约 美国 城市(机场) 气+固 2.709 0.373 0.219 0.591 0.493 0.061 0.259 0.261 0.168 0.038 0.172 0.074 [48] 休斯顿 美国 城市 TSP 3.092 0.27 0.064 1.2 0.49 — 0.56 — — 0.038 0.47 — [33] 乡村 PM2.5 0.305 ND ND 0.1 ND — 0.17 — — — 0.035 — 工业用地 TSP 1.563 0.09 0.087 0.7 0.21 — 0.12 — — 0.056 0.3 — 芝加哥 美国 城市 颗粒 1.192 0.118 0.079 0.407 0.108 — 0.176 — 0.262 0.042 — — [49] 克利夫兰
美国城市 颗粒 1.122 0.104 0.106 0.322 0.181 — 0.125 — 0.227 0.057 — — 乡村 颗粒 0.403 0.152 0.028 0.072 0.034 — 0.032 — 0.077 0.008 — — 睡熊沙丘 美国 偏远地区 颗粒 0.17 0.008 ND 0.027 0.044 — 0.028 — 0.058 0.005 — — 伊格尔港 美国 偏远地区 颗粒 0.219 0.006 0.032 0.029 0.031 — 0.061 — 0.051 0.009 — — 多伦多 加拿大 乡村 气+固 2.654 0.766 0.154 0.671 1.063 — — — — — — — [50] 北极地区 加拿大 偏远地区 颗粒 0.184 0.119 0.003 0.055 0.007 — ND — — ND ND — [36] 多伦多 加拿大 乡村 气+固 2.138 0.608 0.097 0.575 0.7 0.066 — — — — 0.092 — [51] 布尔萨 土耳其 城市 气态 6.884 0.081 ND 0.63 0.152 — — — 5.958 0.063 — — [52] 注:ND, 未检出; —, 无数据; TSP, 总悬浮颗粒物.ND, not detected; —, no data; TSP, Total Suspended Particle.
TBEP: 磷酸三(2-丁氧基乙基)酯, TiBP: 磷酸三异丁酯, TEP: 磷酸三乙酯, EHDPP: 磷酸二苯基异辛酯, TnBP: 磷酸三正丁酯, TCP: 磷酸三甲苯基酯, TPhP: 磷酸三苯酯, TDCPP: 磷酸三(1,3-二氯异丙基)酯).
TBEP: tris(2-butoxyethyl) phosphate, TiBP: tri-iso-butyl phosphate, TEP: trimethyl phosphate, EHDPP: 2-ethylhexyl diphenyl phosphate, TnBP: Tri(n-butyl) phosphate, TCP: tricresyl phosphate, TPhP: triphenyl phosphate, TDCPP: tris(1,3-dichloro-2-propyl) phosphate).表 2 三种模型的比较
Table 2. Comparison of three models
名称
Model原理
Theory公式
Formula简要描述
Description影响因素
Factors自变量
Independent
variable参考文献Ref. Junge-Pankow
模型Langmuir吸附
等温线理论$ {\text{ƒ}}_{\text{part}}=\dfrac{\textit{cθ}}{{{P}}_{\rm{L}}^{\rm{o}}+\textit{cθ}} $ ${ {K} }_{\text{P}\left(\text{J-P}\right)}=\dfrac{ {\text{ƒ} }_{\text{part} } }{ \text{TSP}\left(\text{1}-{\text{ƒ} }_{\text{part} }\right)}$ 假设大气半挥发有机物通过表面吸附作用吸附至颗粒物表面,仅受蒸发和和冷凝过程的影响 温度、蒸气压 过冷饱和蒸气压(PLº) [64] Harner-Bidleman
模型Langmuir吸附
等温线理论$ \mathrm{lg}{{K}}_{\text{P(H-B)}}=\mathrm{lg}{{K}}_{\text{OA}}\text{+}\text{lg}{\text{ƒ}}_{\text{OM}}-\text{11.91} $ ${\text{ƒ} }_{\text{part}\left(\text{H-B}\right)}=\dfrac{ { {K} }_{\text{P}\left(\text{H-B}\right)}\times \text{TSP} }{ { {K} }_{\text{P}\left(\text{H-B}\right)}\times \text{TSP}+\text{1} }$ 基于大气颗粒物中的有机物质吸收作用主导的分配机制 有机质含量、
亲脂性辛醇-空气分配系数(KOA) [64] pp-LFER模型 多参数线性的
自由能关系模型$\begin{aligned} \text{lg}{{K}}_{\text{p(pp-LFERg/p)}}= & 1.01{S}+\text{3.17}{A}+\text{0.30}{B}+\\ & \text{0.78}{L}+\text{0.51}{V}-\text{7.42} \end{aligned}$ ${ {f} }_{\text{part}\left(\text{pp-LFERg/p}\right)}=\dfrac{ { {K} }_{\mathrm{p}\left(\text{pp-LFERg/p}\right)}\times \text{TSP} }{ { {K} }_{\mathrm{p}\left(\text{pp-LFERg/p}\right)}\times \text{TSP}+\text{1} }$ 综合考虑发生气粒分配的多种相互作用力的能量贡献率 温度 极化率(S)、电子受体性质(A)、电子供体性质(B)、
气体-十六烷分配比(L)、麦高恩体积(V)[64] 注:KP: 气-粒分配系数; TSP: 总悬浮颗粒物浓度; KOA: 辛醇-空气分配系数; PLº: vapor pressure; KOA: Octanol-air partition coefficient; S: polarizability; A: electron acceptor (= H-bond donor) capability; B: electron donor (H-bond-acceptor) capability; L: logarithm of the hexadecane/air partition coefficient; V: McGowan volume. -
[1] LIU Q F, LI L, ZHANG X M, et al. Uncovering global-scale risks from commercial chemicals in air [J]. Nature, 2021, 600(7889): 456-461. doi: 10.1038/s41586-021-04134-6 [2] WANG X, ZHU Q Q, YAN X T, et al. A review of organophosphate flame retardants and plasticizers in the environment: Analysis, occurrence and risk assessment [J]. Science of the Total Environment, 2020, 731: 139071. doi: 10.1016/j.scitotenv.2020.139071 [3] 高立红, 厉文辉, 史亚利, 等. 有机磷酸酯阻燃剂分析方法及其污染现状研究进展 [J]. 环境化学, 2014, 33(10): 1750-1761. doi: 10.7524/j.issn.0254-6108.2014.10.004 GAO L H, LI W H, SHI Y L, et al. Analytical methods and pollution status of organophosphate flame retardants [J]. Environmental Chemistry, 2014, 33(10): 1750-1761(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.10.004
[4] 高小中, 许宜平, 王子健. 有机磷酸酯阻燃剂的环境暴露与迁移转化研究进展 [J]. 生态毒理学报, 2015, 10(2): 56-68. GAO X Z, XU Y P, WANG Z J. Progress in environment exposure, transport and transform of organophosphorus flame retardants [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 56-68(in Chinese).
[5] van der VEEN I, de BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067 [6] 廖梓聪, 李会茹, 杨愿愿, 等. 有机磷酸酯(OPEs)的环境污染特征、毒性和分析方法研究进展 [J]. 环境化学, 2022, 41(4): 1193-1215. doi: 10.7524/j.issn.0254-6108.2020121601 LIAO Z C, LI H R, YANG Y Y, et al. The pollution characteristics, toxicity and analytical methods of organophosphate esters (OPEs) in environments: A review [J]. Environmental Chemistry, 2022, 41(4): 1193-1215(in Chinese). doi: 10.7524/j.issn.0254-6108.2020121601
[7] PANTELAKI I, VOUTSA D. Organophosphate flame retardants (OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment [J]. Science of the Total Environment, 2019, 649: 247-263. doi: 10.1016/j.scitotenv.2018.08.286 [8] MÖLLER A, STURM R, XIE Z Y, et al. Organophosphorus flame retardants and plasticizers in airborne particles over the Northern Pacific and Indian Ocean toward the Polar Regions: Evidence for global occurrence [J]. Environmental Science & Technology, 2012, 46(6): 3127-3134. [9] LI J H, ZHAO L M, LETCHER R J, et al. A review on organophosphate Ester (OPE) flame retardants and plasticizers in foodstuffs: Levels, distribution, human dietary exposure, and future directions [J]. Environment International, 2019, 127: 35-51. doi: 10.1016/j.envint.2019.03.009 [10] 王晓伟, 刘景富, 阴永光. 有机磷酸酯阻燃剂污染现状与研究进展 [J]. 化学进展, 2010, 22(10): 1983-1992. WANG X W, LIU J F, YIN Y G. The pollution status and research progress on organophosphate ester flame retardants [J]. Progress in Chemistry, 2010, 22(10): 1983-1992(in Chinese).
[11] LIU Q F, LIGGIO J, WU D M, et al. Experimental study of OH-initiated heterogeneous oxidation of organophosphate flame retardants: Kinetics, mechanism, and toxicity [J]. Environmental Science & Technology, 2019, 53(24): 14398-14408. [12] LAI S C, XIE Z Y, SONG T L, et al. Occurrence and dry deposition of organophosphate esters in atmospheric particles over the northern South China Sea [J]. Chemosphere, 2015, 127: 195-200. doi: 10.1016/j.chemosphere.2015.02.015 [13] WANG Q W, LAM J C W, HAN J, et al. Developmental exposure to the organophosphorus flame retardant tris(1, 3-dichloro-2-propyl) phosphate: Estrogenic activity, endocrine disruption and reproductive effects on zebrafish [J]. Aquatic Toxicology, 2015, 160: 163-171. doi: 10.1016/j.aquatox.2015.01.014 [14] 顾俊婕, 胡曼, 耿阳, 等. 有机磷酸酯阻燃剂的人群暴露和甲状腺毒性的研究进展 [J]. 环境化学, 2022, 41(1): 31-45. doi: 10.7524/j.issn.0254-6108.2020090801 GU J J, HU M, GENG Y, et al. A review of organophosphate esters(OPEs): Human exposure and toxicities in thyroid [J]. Environmental Chemistry, 2022, 41(1): 31-45(in Chinese). doi: 10.7524/j.issn.0254-6108.2020090801
[15] 张恒, 郭昌胜, 吕佳佩, 等. 在线固相萃取-超高效液相色谱法检测水中14种有机磷酸酯 [J]. 环境化学, 2020, 39(4): 1047-1054. doi: 10.7524/j.issn.0254-6108.2019103005 ZHANG H, GUO C S, LYU J P, et al. Determination of 14 organic phosphate esters in water by high performance liquid chromatography coupled with online solid phase extraction [J]. Environmental Chemistry, 2020, 39(4): 1047-1054(in Chinese). doi: 10.7524/j.issn.0254-6108.2019103005
[16] MBUSNUM K G, MALLERET L, DESCHAMPS P, et al. Persistent organic pollutants in sediments of the Wouri Estuary Mangrove, Cameroon: Levels, patterns and ecotoxicological significance [J]. Marine Pollution Bulletin, 2020, 160: 111542. doi: 10.1016/j.marpolbul.2020.111542 [17] ZENG Y, DING N, WANG T, et al. Organophosphate esters (OPEs) in fine particulate matter (PM2.5) in urban, e-waste, and background regions of South China [J]. Journal of Hazardous Materials, 2020, 385: 121583. doi: 10.1016/j.jhazmat.2019.121583 [18] 邓旭, 印红玲, 何婉玲, 等. 有机磷酸酯在成都市市/郊区剖面土壤及农作物中的分布及迁移 [J]. 环境化学, 2019, 38(3): 679-685. doi: 10.7524/j.issn.0254-6108.2018042803 DENG X, YIN H L, HE W L, et al. Distribution and migration of OPEs in soil profile and crops in urban and suburban areas of Chengdu [J]. Environmental Chemistry, 2019, 38(3): 679-685(in Chinese). doi: 10.7524/j.issn.0254-6108.2018042803
[19] 魏莱, 黄清辉, 许宜平, 等. 崇明岛小白鹭鸟卵中有机磷阻燃剂污染特征 [J]. 环境科学学报, 2019, 39(5): 1691-1697. doi: 10.13671/j.hjkxxb.2019.0007 WEI L, HUANG Q H, XU Y P, et al. Occurrence of organophosphorus flame retardants in little egret eggs from Chongming Island [J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1691-1697(in Chinese). doi: 10.13671/j.hjkxxb.2019.0007
[20] PETROPOULOU S S E, PETREAS M, PARK J S. Analytical methodology using ion-pair liquid chromatography-tandem mass spectrometry for the determination of four di-ester metabolites of organophosphate flame retardants in California human urine [J]. Journal of Chromatography A, 2016, 1434: 70-80. doi: 10.1016/j.chroma.2016.01.020 [21] JONSSON O B, DYREMARK E, NILSSON U L. Development of a microporous membrane liquid-liquid extractor for organophosphate esters in human blood plasma: Identification of triphenyl phosphate and octyl diphenyl phosphate in donor plasma [J]. Journal of Chromatography B:Biomedical Sciences and Applications, 2001, 755(1/2): 157-164. [22] 李鹏, 李秋旭, 马玉龙, 等. 凝胶渗透色谱-固相萃取净化-气相色谱-质谱法测定人血清中磷酸三酯类化合物 [J]. 分析化学, 2015, 43(7): 1033-1039. doi: 10.1016/S1872-2040(15)60840-4 LI P, LI Q X, MA Y L, et al. Determination of organophosphate esters in human serum using gel permeation chromatograph and solid phase extraction coupled with GC-MS [J]. Chinese Journal of Analytical Chemistry, 2015, 43(7): 1033-1039(in Chinese). doi: 10.1016/S1872-2040(15)60840-4
[23] KIM J W, ISOBE T, MUTO M, et al. Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries [J]. Chemosphere, 2014, 116: 91-97. doi: 10.1016/j.chemosphere.2014.02.033 [24] DING J J, XU Z M, HUANG W, et al. Organophosphate ester flame retardants and plasticizers in human placenta in Eastern China [J]. Science of the Total Environment, 2016, 554/555: 211-217. doi: 10.1016/j.scitotenv.2016.02.171 [25] 胡晓辉, 仇雁翎, 朱志良, 等. 环境中有机磷酸酯阻燃剂分析方法的研究进展 [J]. 环境化学, 2014, 33(12): 2076-2086. doi: 10.7524/j.issn.0254-6108.2014.12.013 HU X H, QIU Y L, ZHU Z L, et al. Research progress on analytical methods of organophosphate ester flame retardants in the environment [J]. Environmental Chemistry, 2014, 33(12): 2076-2086(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.12.013
[26] 张洛红, 朱钰, 李宗睿, 等. 有机磷酸酯污染现状及其生物富集和生物转化研究进展 [J]. 环境化学, 2021, 40(8): 2355-2370. doi: 10.7524/j.issn.0254-6108.2020121701 ZHANG L H, ZHU Y, LI Z R, et al. Pollution status, bioaccumulation and biotransformation of organophosphate esters: A review [J]. Environmental Chemistry, 2021, 40(8): 2355-2370(in Chinese). doi: 10.7524/j.issn.0254-6108.2020121701
[27] 张晓华, 赵繁荣, 胡建英. 我国人群有机磷阻燃剂暴露评估及其健康风险 [J]. 生态毒理学报, 2021, 16(3): 155-165. ZHANG X H, ZHAO F R, HU J Y. Exposure assessment and health risk of organophosphate flame retardants in general population in China [J]. Asian Journal of Ecotoxicology, 2021, 16(3): 155-165(in Chinese).
[28] YAO C, YANG H P, LI Y. A review on organophosphate flame retardants in the environment: Occurrence, accumulation, metabolism and toxicity [J]. Science of the Total Environment, 2021, 795: 148837. doi: 10.1016/j.scitotenv.2021.148837 [29] FAIZ Y, SIDDIQUE N, HE H, et al. Occurrence and profile of organophosphorus compounds in fine and coarse particulate matter from two urban areas of China and Pakistan [J]. Environmental Pollution (Barking, Essex:1987), 2018, 233: 26-34. doi: 10.1016/j.envpol.2017.09.091 [30] NILU (Norsk institutt for luftforskning). Monitoring of environmental contaminants in air and precipitation, annual report 2020. [EB/OL]. [2021-12-14]. [31] QUINTANA J B, RODIL R, LÓPEZ-MAHÍA P, et al. Optimisation of a selective method for the determination of organophosphorous triesters in outdoor particulate samples by pressurised liquid extraction and large-volume injection gas chromatography-positive chemical ionisation-tandem mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2007, 388(5/6): 1283-1293. [32] REN Y Q, WANG G H, LI J J, et al. Evolution of aerosol chemistry in Xi'an during the spring dust storm periods: Implications for heterogeneous formation of secondary organic aerosols on the dust surface [J]. Chemosphere, 2019, 215: 413-421. doi: 10.1016/j.chemosphere.2018.10.064 [33] CLARK A E, YOON S, SHEESLEY R J, et al. Spatial and temporal distributions of organophosphate ester concentrations from atmospheric particulate matter samples collected across Houston, TX [J]. Environmental Science & Technology, 2017, 51(8): 4239-4247. [34] NACCARATO A, TASSONE A, MORETTI S, et al. A green approach for organophosphate ester determination in airborne particulate matter: Microwave-assisted extraction using hydroalcoholic mixture coupled with solid-phase microextraction gas chromatography-tandem mass spectrometry [J]. Talanta, 2018, 189: 657-665. doi: 10.1016/j.talanta.2018.07.077 [35] ZHOU L L, HILTSCHER M, GRUBER D, et al. Organophosphate flame retardants (OPFRs) in indoor and outdoor air in the Rhine/Main area, Germany: Comparison of concentrations and distribution profiles in different microenvironments [J]. Environmental Science and Pollution Research International, 2017, 24(12): 10992-11005. doi: 10.1007/s11356-016-6902-z [36] SÜHRING R, DIAMOND M L, SCHERINGER M, et al. Organophosphate esters in Canadian Arctic air: Occurrence, levels and trends [J]. Environmental Science & Technology, 2016, 50(14): 7409-7415. [37] MÖLLER A, XIE Z Y, CABA A, et al. Organophosphorus flame retardants and plasticizers in the atmosphere of the North Sea [J]. Environmental Pollution, 2011, 159(12): 3660-3665. doi: 10.1016/j.envpol.2011.07.022 [38] LIU R R, LIN Y F, LIU R Z, et al. Evaluation of two passive samplers for the analysis of organophosphate esters in the ambient air [J]. Talanta, 2016, 147: 69-75. doi: 10.1016/j.talanta.2015.09.034 [39] REN G F, CHEN Z, FENG J L, et al. Organophosphate esters in total suspended particulates of an urban city in East China [J]. Chemosphere, 2016, 164: 75-83. doi: 10.1016/j.chemosphere.2016.08.090 [40] WANG T, DING N, WANG T, et al. Organophosphorus esters (OPEs) in PM2.5 in urban and e-waste recycling regions in Southern China: Concentrations, sources, and emissions [J]. Environmental Research, 2018, 167: 437-444. doi: 10.1016/j.envres.2018.08.015 [41] LIU D, LIN T, SHEN K J, et al. Occurrence and concentrations of halogenated flame retardants in the atmospheric fine particles in Chinese cities [J]. Environmental Science & Technology, 2016, 50(18): 9846-9854. [42] CHEN Y Q, ZHANG Q, LUO T W, et al. Occurrence, distribution and health risk assessment of organophosphate esters in outdoor dust in Nanjing, China: Urban vs. rural areas [J]. Chemosphere, 2019, 231: 41-50. doi: 10.1016/j.chemosphere.2019.05.135 [43] HE M J, LU J F, WEI S Q. Organophosphate esters in biota, water, and air from an agricultural area of Chongqing, western China: Concentrations, composition profiles, partition and human exposure [J]. Environmental Pollution, 2019, 244: 388-397. doi: 10.1016/j.envpol.2018.10.085 [44] YIN H L, LIANG J F, WU D, et al. Measurement report: Seasonality, distribution and sources of organophosphate esters in PM2.5 from an inland urban city in Southwest China [J]. Atmospheric Chemistry and Physics, 2020, 20(23): 14933-14945. doi: 10.5194/acp-20-14933-2020 [45] WANG Y, LI Z Y, TAN F, et al. Occurrence and air-soil exchange of organophosphate flame retardants in the air and soil of Dalian, China [J]. Environmental Pollution, 2020, 265: 114850. doi: 10.1016/j.envpol.2020.114850 [46] WOLSCHKE H, SÜHRING R, MI W Y, et al. Atmospheric occurrence and fate of organophosphorus flame retardants and plasticizer at the German coast [J]. Atmospheric Environment, 2016, 137: 1-5. doi: 10.1016/j.atmosenv.2016.04.028 [47] QUINTANA J B, RODIL R, REEMTSMA T, et al. Organophosphorus flame retardants and plasticizers in water and air Ⅱ. Analytical methodology [J]. TrAC Trends in Analytical Chemistry, 2008, 27(10): 904-915. doi: 10.1016/j.trac.2008.08.004 [48] WONG F, de WIT C A, NEWTON S R. Concentrations and variability of organophosphate esters, halogenated flame retardants, and polybrominated diphenyl ethers in indoor and outdoor air in Stockholm, Sweden [J]. Environmental Pollution, 2018, 240: 514-522. doi: 10.1016/j.envpol.2018.04.086 [49] SALAMOVA A, MA Y N, VENIER M, et al. High levels of organophosphate flame retardants in the great lakes atmosphere [J]. Environmental Science & Technology Letters, 2014, 1(1): 8-14. [50] ABDOLLAHI A, ENG A, JANTUNEN L M, et al. Characterization of polyurethane foam (PUF) and sorbent impregnated PUF (SIP) disk passive air samplers for measuring organophosphate flame retardants [J]. Chemosphere, 2017, 167: 212-219. doi: 10.1016/j.chemosphere.2016.09.111 [51] SHOEIB M, AHRENS L, JANTUNEN L, et al. Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada [J]. Atmospheric Environment, 2014, 99: 140-147. doi: 10.1016/j.atmosenv.2014.09.040 [52] KURT-KARAKUS P, ALEGRIA H, BIRGUL A, et al. Organophosphate ester (OPEs) flame retardants and plasticizers in air and soil from a highly industrialized city in Turkey [J]. Science of the Total Environment, 2018, 625: 555-565. doi: 10.1016/j.scitotenv.2017.12.307 [53] SALAMOVA A, PEVERLY A A, VENIER M, et al. Spatial and temporal trends of particle phase organophosphate ester concentrations in the atmosphere of the great lakes [J]. Environmental Science & Technology, 2016, 50(24): 13249-13255. [54] HE C, WANG X Y, THAI P, et al. Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure [J]. Environmental Pollution, 2018, 235: 670-679. doi: 10.1016/j.envpol.2017.12.017 [55] FU J, FU K H, CHEN Y, et al. Long-range transport, trophic transfer, and ecological risks of organophosphate esters in remote areas [J]. Environmental Science & Technology, 2021, 55(15): 10192-10209. [56] ZHANG W W, WANG P, LI Y M, et al. Spatial and temporal distribution of organophosphate esters in the atmosphere of the Beijing-Tianjin-Hebei region, China [J]. Environmental Pollution, 2019, 244: 182-189. doi: 10.1016/j.envpol.2018.09.131 [57] SÜHRING R, WOLSCHKE H, DIAMOND M L, et al. Distribution of organophosphate esters between the gas and particle phase-model predictions vs measured data [J]. Environmental Science & Technology, 2016, 50(13): 6644-6651. [58] SALAMOVA A, HERMANSON M H, HITES R A. Organophosphate and halogenated flame retardants in atmospheric particles from a European Arctic site [J]. Environmental Science & Technology, 2014, 48(11): 6133-6140. [59] LI J, XIE Z Y, MI W Y, et al. Organophosphate esters in air, snow, and seawater in the north Atlantic and the Arctic [J]. Environmental Science & Technology, 2017, 51(12): 6887-6896. [60] NA G S, HOU C, LI R J, et al. Occurrence, distribution, air-seawater exchange and atmospheric deposition of organophosphate esters (OPEs) from the Northwestern Pacific to the Arctic Ocean [J]. Marine Pollution Bulletin, 2020, 157: 111243. doi: 10.1016/j.marpolbul.2020.111243 [61] REGNERY J, PÜTTMANN W. Occurrence and fate of organophosphorus flame retardants and plasticizers in urban and remote surface waters in Germany [J]. Water Research, 2010, 44(14): 4097-4104. doi: 10.1016/j.watres.2010.05.024 [62] LIAGKOURIDIS I, COUSINS A P, COUSINS I T. Physical-chemical properties and evaluative fate modelling of ‘emerging’ and ‘novel’ brominated and organophosphorus flame retardants in the indoor and outdoor environment [J]. Science of the Total Environment, 2015, 524/525: 416-426. doi: 10.1016/j.scitotenv.2015.02.106 [63] YAMAN B, DUMANOGLU Y, ODABASI M. Measurement and modeling the phase partitioning of organophosphate esters using their temperature-dependent octanol-air partition coefficients and vapor pressures [J]. Environmental Science & Technology, 2020, 54(13): 8133-8143. [64] OKEME J O, RODGERS T F M, JANTUNEN L M, et al. Examining the gas-particle partitioning of organophosphate esters: How reliable are air measurements? [J]. Environmental Science & Technology, 2018, 52(23): 13834-13844. [65] YANG F X, DING J J, HUANG W, et al. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter [J]. Environmental Science & Technology, 2014, 48(1): 63-70. [66] KHAIRY M A, LOHMANN R. Organophosphate flame retardants in the indoor and outdoor dust and gas-phase of Alexandria, Egypt [J]. Chemosphere, 2019, 220: 275-285. doi: 10.1016/j.chemosphere.2018.12.140 [67] WU Y, VENIER M, SALAMOVA A. Spatioseasonal variations and partitioning behavior of organophosphate esters in the great lakes atmosphere [J]. Environmental Science & Technology, 2020, 54(9): 5400-5408. [68] ZENG Y, CHEN S J, LIANG Y H, et al. Traditional and novel organophosphate esters (OPEs) in PM2.5 of a megacity, Southern China: Spatioseasonal variations, sources, and influencing factors [J]. Environmental Pollution, 2021, 284: 117208. doi: 10.1016/j.envpol.2021.117208 [69] LI J, TANG J H, MI W Y, et al. Spatial distribution and seasonal variation of organophosphate esters in air above the Bohai and Yellow Seas, China [J]. Environmental Science & Technology, 2018, 52(1): 89-97. [70] WANG Y, BAO M J, TAN F, et al. Distribution of organophosphate esters between the gas phase and PM2.5 in urban Dalian, China [J]. Environmental Pollution, 2020, 259: 113882. doi: 10.1016/j.envpol.2019.113882 [71] CASTRO-JIMÉNEZ J, SEMPÉRÉ R. Atmospheric particle-bound organophosphate ester flame retardants and plasticizers in a North African Mediterranean coastal city (Bizerte, Tunisia) [J]. Science of the Total Environment, 2018, 642: 383-393. doi: 10.1016/j.scitotenv.2018.06.010 [72] LIU Y C, LIGGIO J, HARNER T, et al. Heterogeneous OH initiated oxidation: A possible explanation for the persistence of organophosphate flame retardants in air [J]. Environmental Science & Technology, 2014, 48(2): 1041-1048. [73] CASTRO-JIMÉNEZ J, GONZÁLEZ-GAYA B, PIZARRO M, et al. Organophosphate ester flame retardants and plasticizers in the global oceanic atmosphere [J]. Environmental Science & Technology, 2016, 50(23): 12831-12839. [74] 杨孔. 中原城市群典型城市大气有机阻燃剂污染特征及来源解析[D]. 新乡: 河南师范大学, 2019. YANG K. Pollution characteristics and source analysis of atmospheric organic flame retardants in selected cites in the central Henan urban agglomeration[D]. Xinxiang: Henan Normal University, 2019 (in Chinese).
[75] LI Y M, XIONG S Y, HAO Y F, et al. Organophosphate esters in Arctic air from 2011 to 2019: Concentrations, temporal trends, and potential sources [J]. Journal of Hazardous Materials, 2022, 434: 128872. doi: 10.1016/j.jhazmat.2022.128872 [76] 房晓静, 杨圣文, 张洪海, 等. 海洋及其上空大气中有机磷酸酯的研究进展 [J]. 海洋科学, 2020, 44(9): 154-165. FANG X J, YANG S W, ZHANG H H, et al. Review of organophosphate esters in oceans and atmospheres [J]. Marine Sciences, 2020, 44(9): 154-165(in Chinese).
[77] WANG L F, HUANG Y F, ZHANG X D, et al. Mesoscale cycling of organophosphorus flame retardants (OPFRs) in the Bohai Sea and Yellow Sea biotic and abiotic environment: A WRF-CMAQ modeling [J]. Environmental Pollution, 2022, 298: 118859. doi: 10.1016/j.envpol.2022.118859 [78] ZHANG L L, XU W H, MI W Y, et al. Atmospheric deposition, seasonal variation, and long-range transport of organophosphate esters on Yongxing Island, South China Sea [J]. Science of the Total Environment, 2022, 806: 150673. doi: 10.1016/j.scitotenv.2021.150673 [79] 吴小伟. 大连近岸多环芳烃和有机阻燃剂的污染特征和水-气交换研究[D]. 大连: 大连理工大学, 2018. WU X W. Characrization and air-water exchange of PAHs and organic flame retardents in the coastal area of Dalian[D]. Dalian: Dalian University of Technology, 2018 (in Chinese).
[80] LI W H, WANG Y, KANNAN K. Occurrence, distribution and human exposure to 20 organophosphate esters in air, soil, pine needles, river water, and dust samples collected around an airport in New York state, United States [J]. Environment International, 2019, 131: 105054. doi: 10.1016/j.envint.2019.105054 [81] WU J H, ZHANG Y F, SONG L, et al. Occurrence and dry deposition of organophosphate esters in atmospheric particles above the Bohai Sea and northern Yellow Sea, China [J]. Atmospheric Environment, 2022, 269: 118831. doi: 10.1016/j.atmosenv.2021.118831 [82] LI C, CHEN J W, XIE H B, et al. Effects of atmospheric water on ·OH-initiated oxidation of organophosphate flame retardants: A DFT investigation on TCPP [J]. Environmental Science & Technology, 2017, 51(9): 5043-5051.