-
饮用水消毒始于20世纪初[1],它能有效杀灭水中的微生物病原体, 大大降低了人们因饮水而感染痢疾、霍乱等水传播疾病而致死的几率, 是人类公共卫生领域的一次重大突破. 然而,在饮用水消毒工艺中,氯、氯胺等化学消毒剂可与水源水中的天然有机物(NOM)反应生成消毒副产物(DBPs)[2-4]. 毒理学和流行病学研究已经证明,饮用水DBPs具有细胞毒性和遗传毒性,并且与癌症、流产和出生缺陷等风险呈正相关[5-8]. 尽管研究人员已在饮用水中发现700多种DBPs[9],但已知DBPs均为分子量小于800 Da的低分子量DBPs,仍有超过50%的DBPs处于未知状态[10-11]. Kopfler等[12]通过超滤实验证明了高分子量DBPs的存在,且沙门氏菌突变试验表明DBPs中高分子量组分有显著的致突变作用,从而证实了高分子量DBPs的生物毒性. Zhang等[13-14]研究发现,高分子量氯代DBPs的平均分子量约为2000 Da且分子量分布高度分散. 由此可见,高分子量DBPs是DBPs的重要组成部分,亟需对其进行进一步探索.
目前对饮用水DBPs的检测识别主要集中于小分子DBPs,而对单个高分子量DBPs的检测与识别还非常缺乏. 气相色谱/质谱法(GC/MS)是目前对于DBPs常用的检测方法,但是GC/MS不适合鉴定极性/亲水/非挥发性衍生物,尤其不适合鉴定高分子量化合物[15]. 而液相色谱/质谱法(LC/MS)对无机盐耐受程度低[16],并且电喷雾电离等电离方式会产生多电荷离子[17],这又会给未知DBPs的识别带来很大挑战. 因此,研究高分子量DBPs的关键是选择合适的检测方法. 基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)是测定高分子量物质的摩尔质量和摩尔质量分布的最有用的分析技术之一[18-20],并因其速度快,使用方便,灵敏度高,杂质耐受度较高,已被广泛应用在微生物、蛋白质、聚合物等大分子物质的检测领域[21-25]. MALDI是一种比电喷雾电离(ESI)更温和的电离技术,几乎只产生单电荷分子离子,能电离极性分子和非极性分子. MALDI-TOF MS在分析中能够保持高分子量化合物的完整[26],同时具有高分辨率质谱的优势,具有较高的质量精度和分辨率[24]. 因此MALDI-TOF MS对高分子量DBPs样品的识别具有巨大潜力.
MALDI-TOF MS的检测条件(如基质、阳离子化试剂、沉积方法、激光能量、检测模式等)应根据目标样品进行选择[27-28]. 尽管目前文献中已有一些样品制备和检测方法,但是由于高分子量DBPs的结构未知,且分子量分散、结构复杂,如何针对其性质找到最佳的样品制备方案和仪器条件仍然是一个挑战. 因此,筛选合适的基质、阳离子化试剂、仪器参数和点靶方法等,是基于MALDI-TOF MS的高分子量DBPs检测方法的关键. 在没有大量精确数据的情况下,识别未知物质是一项非常具有挑战性的工作. 仅使用低分辨率质谱,未知DBPs可能有许多分子式(分子量在800 Da以上的化合物则会有更多可能的分子式),且每个分子式都有多种可能结构. 高分辨率质谱可以提供精确的质荷比(通常是小数点后3位或4位),这大大缩小了分子式的选择范围[29]. MALDI-TOF MS作为一种高分辨率质谱(HRMS),凭借超高分辨率可以明确地分配每种物质的元素组成. MALDI-TOF MS还可以提供TOF/TOF串联质谱,分析碎片离子的组成,从而得到分子的结构信息. 因此MALDI-TOF MS为高分子量DBPs分子式和结构式的识别提供了可能.
本研究率先在高分子量DBPs的检测中引入了MALDI-TOF MS,建立了未知高分子量DBPs的检测方法,从检测模式、基质、激光强度、阳离子化试剂、点靶方法等进行优化,提高了未知高分子量DBPs的响应信噪比(S/N),改善了样品间测量的重现性;在检测基础上,通过高分辨质谱数据、同位素模式分析、TOF/TOF串联质谱提供的结构信息以及SciFinder数据库,建立了高分子量DBPs的分子式/结构式识别方法.
饮用水中高分子量消毒副产物的检测识别方法
Detection and identification of high-molecular-weight disinfection byproducts in drinking water
-
摘要: 消毒是饮用水处理过程中的重要步骤,但普遍采用的氯系消毒剂在杀灭细菌病毒的同时,能产生大量具有“三致”效应的卤代消毒副产物(DBPs),严重威胁了饮用水的化学安全. 研究人员已在饮用水中陆续检测并识别出700多种DBPs,但这些已知DBPs均为分子量小于800 Da的低分子量DBPs,目前对高分子量DBPs的认识还较为有限. 本研究建立了基于基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)的高分子量DBPs检测方法,发现在基质为2,5-二羟基苯甲酸,阳离子化试剂为三氟乙酸钠,使用三明治法点靶,反射-正离子模式,90%激光强度时,信噪比和信号重现性达到最优,信噪比之和达到了136.2,变异系数(CV)则为4.77%. 利用上述方法,在模拟饮用水中检测到5种新的高分子量DBPs. 在此基础上,通过同位素模式分析、TOF/TOF串联质谱和数据库验证,建立了针对未知高分子量DBPs的分子式/结构式识别方法,确定新的高分子量DBPs为寡糖羧酸类物质.
-
关键词:
- 高分子量消毒副产物 /
- 基质辅助激光解吸电离飞行时间质谱 /
- 阳离子化试剂 /
- 检测 /
- 识别.
Abstract: Disinfection is an important step in drinking water treatment process. However, disinfectants such as chlorine or chloramine can generate numerous halogenated disinfection byproducts (DBPs) with carcinogenicity, teratogenicity, and mutagenicity, which pose great threat to drinking water safety. More than 700 DBPs have been detected and identified in drinking water by researchers. The molecular weights of these known DBPs are all below 800 Da, and the understanding of high-molecular-weight DBPs is very limited. In this study, a detection method for high-molecular-weight DBPs was established based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). It was found that when the matrix was 2,5-dihydroxybenzoic acid, the cationization agent was sodium trifluoroacetate, the sandwich deposition method was used, the reflection-positive ion mode was applied, and the laser intensity was 90%, the highest signal intensity of high-molecular-weight DBPs could be obtained. At such condition, the signal reproducibility was maximized, the sum of the signal-to-noise ratio of new high-molecular-weight DBPs reached 136.2, and the coefficient of variation (CV) was 4.77%. Five new high-molecular-weight DBPs were detected in simulated drinking water using the above method. On such basis, a formula/structure identification method for unknown high-molecular-weight DBPs was established by isotopic pattern analysis, TOF/TOF tandem mass spectrometry, and database verification. With this method, the five new high-molecular-weight DBPs were determined to be oligosaccharide carboxylic acids. -
表 1 不同基质在四种检测模式下的高分子量DBPs出峰情况
Table 1. Peaks of high molecular weight DBPs in four detection modes using different matrices
基质
Matrix反射-正离子模式
Reflection-positive ion mode反射-负离子模式
Reflection-negative ion mode线性-正离子模式
Linear-positive ion mode线性-负离子模式
Linear-negative ion modeS/N CV/% S/N CV/% S/N CV/% S/N CV/% DHB 94.9 11.29 N.D. N.D. N.D. N.D. N.D. N.D. THAP 33.3 12.13 N.D. N.D. N.D. N.D. N.D. N.D. CHCA 7.0 14.28 N.D. N.D. N.D. N.D. N.D. N.D. SA N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. DCTB N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. DIT N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. HABA N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. IAA N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 未检出. N.D. not detected. 表 2 m/z 1051.3018的分子式计算结果
Table 2. The calculation result of the molecular formula of m/z 1051.3018
分子离子赋值
Molecular ion
assignment实际质荷比
Actual mass-to-
charge ratio理论质荷比
Theoretical mass-to-
charge ratio质量误差
Quality errorO/C H/C 双键当量
Double bond equivalent氮规则
Nitrogen rule[C38H60O32]Na + 1051.3018 1051.2960 5.517×10−6 0.842 1.579 8.5 Yes [C36H61O32Na]Na + 1051.3018 1051.2936 7.780×10−6 0.889 1.694 5.5 Yes [C40H61O29Na]Na + 1051.3018 1537.3088 6.658×10−6 0.725 1.525 9.5 Yes 表 3 高分子量DBPs分子式识别结果
Table 3. Molecular formula identification results of high molecular weight DBPs
分子离子赋值
Molecular ion
assignment实际质荷比
Actual mass-to-charge
ratio理论质荷比
Theoretical
mass-to-charge ratio质量误差
Quality errorO/C H/C 双键当量
Double bond
equivalent氮规则
Nitrogen rule[C30H51O27Na]Na + 889.2478 889.2408 7.872×10−6 1.700 0.900 4.5 符合 [C36H61O32Na]Na + 1051.3018 1051.2936 7.780×10−6 1.694 0.889 5.5 符合 [C42H71O37Na]Na + 1213.3578 1213.3464 9.396×10−6 1.690 0.881 6.5 符合 [C48H81O42Na]Na + 1375.4115 1375.3992 8.943×10−6 1.688 0.875 7.5 符合 [C54H91O47Na]Na + 1537.4675 1537.4529 9.496×10−6 1.685 0.870 8.5 符合 -
[1] NIEUWENHUIJSEN M J, TOLEDANO M B, EATON N E, et al. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: A review [J]. Occupational and Environmental Medicine, 2000, 57(2): 73-85. doi: 10.1136/oem.57.2.73 [2] RICHARDSON S D, POSTIGO C. Drinking water disinfection by-products[M]//The Handbook of Environmental Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 93-137. [3] RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research [J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1/2/3): 178-242. [4] 王志健, 胡霞林, 尹大强. 藻源有机质表征及消毒副产物生成潜能研究进展 [J]. 环境化学, 2021, 40(10): 2979-2991. doi: 10.7524/j.issn.0254-6108.2021033001 WANG Z J, HU X L, YIN D Q. Characterization and formation potential of disinfection by-products of algal organic matter: The critical review [J]. Environmental Chemistry, 2021, 40(10): 2979-2991(in Chinese). doi: 10.7524/j.issn.0254-6108.2021033001
[5] WAGNER E D, PLEWA M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review [J]. Journal of Environmental Sciences, 2017, 58: 64-76. doi: 10.1016/j.jes.2017.04.021 [6] WRIGHT J M, EVANS A, KAUFMAN J A, et al. Disinfection by-product exposures and the risk of specific cardiac birth defects [J]. Environmental Health Perspectives, 2017, 125(2): 269-277. doi: 10.1289/EHP103 [7] LI X F, MITCH W A. Drinking water disinfection byproducts (DBPs) and human health effects: Multidisciplinary challenges and opportunities [J]. Environmental Science & Technology, 2018, 52(4): 1681-1689. [8] 刘晗, 邓琳. 饮用水中卤代硝基甲烷的分布特点、来源及毒性研究进展 [J]. 环境化学, 2022, 41(4): 1182-1192. doi: 10.7524/j.issn.0254-6108.2020112801 LIU H, DENG L. Research progress on distribution characteristics, source and toxicity of halonitromethanes in drinking water [J]. Environmental Chemistry, 2022, 41(4): 1182-1192(in Chinese). doi: 10.7524/j.issn.0254-6108.2020112801
[9] RICHARDSON S D, KIMURA S Y. Water analysis: Emerging contaminants and current issues [J]. Analytical Chemistry, 2020, 92(1): 473-505. doi: 10.1021/acs.analchem.9b05269 [10] RICHARDSON S D, TERNES T A. Water analysis: Emerging contaminants and current issues [J]. Analytical Chemistry, 2014, 86(6): 2813-2848. doi: 10.1021/ac500508t [11] YANG M T, ZHANG X R. Current trends in the analysis and identification of emerging disinfection byproducts [J]. Trends in Environmental Analytical Chemistry, 2016, 10: 24-34. doi: 10.1016/j.teac.2016.03.002 [12] KOPFLER F C, RINGHAND H P, COLEMAN W E, et al. Reactions of chlorine in drinking water, with humic acids and in vivo// Water Chlorination: Chemistry, Environmental Impact and Health Effects[M]. Chelsea, MI: Lewis Publishers, 1984: 161-173. [13] ZHANG X R, MINEAR R A. Formation, adsorption and separation of high molecular weight disinfection byproducts resulting from chlorination of aquatic humic substances [J]. Water Research, 2006, 40(2): 221-230. doi: 10.1016/j.watres.2005.10.024 [14] ZHANG X R, MINEAR R A, BARRETT S E. Characterization of high molecular weight disinfection byproducts from chlorination of humic substances with/without coagulation pretreatment using UF-SEC-ESI-MS/MS [J]. Environmental Science & Technology, 2005, 39(4): 963-972. [15] RICHARDSON S D. The role of GC-MS and LC-MS in the discovery of drinking water disinfection by-products [J]. Journal of Environmental Monitoring, 2002, 4(1): 1-9. doi: 10.1039/b105578j [16] ZHOU X T, MENG X J, CHENG L M, et al. Development and application of an MS ALL-based approach for the quantitative analysis of linear polyethylene glycols in rat plasma by liquid chromatography triple-quadrupole/time-of-flight mass spectrometry [J]. Analytical Chemistry, 2017, 89(10): 5193-5200. doi: 10.1021/acs.analchem.6b04058 [17] PAN C S, XU S Y, ZHOU H J, et al. Recent developments in methods and technology for analysis of biological samples by MALDI-TOF-MS [J]. Analytical and Bioanalytical Chemistry, 2007, 387(1): 193-204. doi: 10.1007/s00216-006-0905-4 [18] KARAS M, BACHMANN D, BAHR U, et al. Matrix-assisted ultraviolet laser desorption of non-volatile compounds [J]. International Journal of Mass Spectrometry and Ion Processes, 1987, 78: 53-68. doi: 10.1016/0168-1176(87)87041-6 [19] TANAKA K, WAKI H, IDO Y, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 1988, 2(8): 151-153. doi: 10.1002/rcm.1290020802 [20] BALLATORE M B, BETTIOL M D R, VANDEN BRABER N L, et al. Antioxidant and cytoprotective effect of peptides produced by hydrolysis of whey protein concentrate with trypsin [J]. Food Chemistry, 2020, 319: 126472. doi: 10.1016/j.foodchem.2020.126472 [21] HEILBRONNER S, FOSTER T J. Staphylococcus lugdunensis: A skin commensal with invasive pathogenic potential [J]. Clinical Microbiology Reviews, 2020, 34(2): e00205-e00220. [22] BŁAŻEK K, BENEŠ H, WALTEROVÁ Z, et al. Synthesis and structural characterization of bio-based bis(cyclic carbonate)s for the preparation of non-isocyanate polyurethanes [J]. Polymer Chemistry, 2021, 12(11): 1643-1652. doi: 10.1039/D0PY01576H [23] NICOLAU R, LELOUP M, LACHASSAGNE D, et al. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) coupled to XAD fractionation: Method to algal organic matter characterization [J]. Talanta, 2015, 136: 102-107. doi: 10.1016/j.talanta.2015.01.011 [24] NAVALON S, ALVARO M, ALCAINA I, et al. Multi-method characterization of DOM from the Turia river (Spain) [J]. Applied Geochemistry, 2010, 25(11): 1632-1643. doi: 10.1016/j.apgeochem.2010.08.011 [25] DREISEWERD K, MÜTHING J, ROHLFING A, et al. Analysis of gangliosides directly from thin-layer chromatography plates by infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry with a glycerol matrix [J]. Analytical Chemistry, 2005, 77(13): 4098-4107. doi: 10.1021/ac048373w [26] RANKIN K, MABURY S A. Matrix normalized MALDI-TOF quantification of a fluorotelomer-based acrylate polymer [J]. Environmental Science & Technology, 2015, 49(10): 6093-6101. [27] KOOIJMAN P C, KOK S J, WEUSTEN J J A M, et al. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality: A novel statistical approach for quality scoring [J]. Analytica Chimica Acta, 2016, 919: 1-10. doi: 10.1016/j.aca.2016.03.031 [28] KIMURA S Y, CUTHBERTSON A A, BYER J D, et al. The DBP exposome: Development of a new method to simultaneously quantify priority disinfection by-products and comprehensively identify unknowns [J]. Water Research, 2019, 148: 324-333. doi: 10.1016/j.watres.2018.10.057 [29] MCCRADY M H. Standard methods for the examination of water and waste-water (12th ed. ) [J]. American Journal of Public Health and the Nations Health, 1966, 56(4): 684. [30] WEI Y Y, LIU Y, MA L M, et al. Speciation and formation of iodinated trihalomethane from microbially derived organic matter during the biological treatment of micro-polluted source water [J]. Chemosphere, 2013, 92(11): 1529-1535. doi: 10.1016/j.chemosphere.2013.04.019 [31] ARTIFON V, ZANARDI-LAMARDO E, FILLMANN G. Aquatic organic matter: Classification and interaction with organic microcontaminants [J]. Science of the Total Environment, 2019, 649: 1620-1635. doi: 10.1016/j.scitotenv.2018.08.385 [32] LIU J L, LI X Y. Biodegradation and biotransformation of wastewater organics as precursors of disinfection byproducts in water [J]. Chemosphere, 2010, 81(9): 1075-1083. doi: 10.1016/j.chemosphere.2010.09.041 [33] ZHANG Q, LIU B, LIU Y. Effect of ozone on algal organic matters as precursors for disinfection by-products production [J]. Environmental Technology, 2014, 35(14): 1753-1759. doi: 10.1080/09593330.2014.881422 [34] HONG H C, MAZUMDER A, WONG M H, et al. Yield of trihalomethanes and haloacetic acids upon chlorinating algal cells, and its prediction via algal cellular biochemical composition [J]. Water Research, 2008, 42(20): 4941-4948. doi: 10.1016/j.watres.2008.09.019 [35] CHEN X G, KONG L, SU X Y, et al. Integration of ion-exchange chromatography fractionation with reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometer and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for isolation and identification of compounds in Psoralea corylifolia [J]. Journal of Chromatography A, 2005, 1089(1/2): 87-100. [36] CHEN X G, HU L H, SU X Y, et al. Separation and detection of compounds in Honeysuckle by integration of ion-exchange chromatography fractionation with reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometer and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis [J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 40(3): 559-570. doi: 10.1016/j.jpba.2005.07.043 [37] KRISTIANA I, TAN J, JOLL C A, et al. Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter [J]. Water Research, 2013, 47(2): 535-546. doi: 10.1016/j.watres.2012.10.014 [38] ALMASOUD N, CORREA E, TRIVEDI D K, et al. Fractional factorial design of MALDI-TOF-MS sample preparations for the optimized detection of phospholipids and acylglycerols [J]. Analytical Chemistry, 2016, 88(12): 6301-6308. doi: 10.1021/acs.analchem.6b00512 [39] POSTIGO C, ANDERSSON A, HARIR M, et al. Unraveling the chemodiversity of halogenated disinfection by-products formed during drinking water treatment using target and non-target screening tools [J]. Journal of Hazardous Materials, 2021, 401: 123681. doi: 10.1016/j.jhazmat.2020.123681 [40] CAO D, HUANG H G, HU M, et al. Comprehensive characterization of natural organic matter by MALDI- and ESI-Fourier transform ion cyclotron resonance mass spectrometry [J]. Analytica Chimica Acta, 2015, 866: 48-58. doi: 10.1016/j.aca.2015.01.051 [41] SROKA-BARTNICKA A, CIESIELSKI W, LIBISZOWSKI J, et al. Complementarity of solvent-free MALDI TOF and solid-state NMR spectroscopy in spectral analysis of polylactides [J]. Analytical Chemistry, 2010, 82(1): 323-328. doi: 10.1021/ac9020006 [42] WANG J Q, ZHAO J, NIE S P, et al. Rapid profiling strategy for oligosaccharides and polysaccharides by MALDI TOF mass spectrometry [J]. Food Hydrocolloids, 2022, 124: 107237. doi: 10.1016/j.foodhyd.2021.107237 [43] KWON C, LEE S, JUNG S. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric behavior of succinoglycan monomers, dimers, and trimers isolated from Sinorhizobium meliloti 1021 [J]. Carbohydrate Research, 2011, 346(14): 2308-2314. doi: 10.1016/j.carres.2011.07.023 [44] HUNG W T, WANG S H, CHEN Y T, et al. MALDI-TOF MS analysis of native and permethylated or benzimidazole-derivatized polysaccharides [J]. Molecules (Basel, Switzerland), 2012, 17(5): 4950-4961. doi: 10.3390/molecules17054950 [45] WETZEL S J, GUTTMAN C M, FLYNN K M, et al. Significant parameters in the optimization of MALDI-TOF-MS for synthetic polymers [J]. Journal of the American Society for Mass Spectrometry, 2006, 17(2): 246-252. doi: 10.1016/j.jasms.2005.11.007 [46] WETZEL S J, GUTTMAN C M, GIRARD J E. The influence of matrix and laser energy on the molecular mass distribution of synthetic polymers obtained by MALDI-TOF-MS [J]. International Journal of Mass Spectrometry, 2004, 238(3): 215-225. doi: 10.1016/j.ijms.2004.04.019 [47] LIN Y, HUANG X, LIU Q, et al. Thermal fragmentation enhanced identification and quantification of polystyrene micro/nanoplastics in complex media [J]. Talanta, 2020, 208: 120478. doi: 10.1016/j.talanta.2019.120478 [48] PARK E, YANG H, KIM Y, et al. Analysis of oligosaccharides in beer using MALDI-TOF-MS [J]. Food Chemistry, 2012, 134(3): 1658-1664. doi: 10.1016/j.foodchem.2012.03.069 [49] LING L, XIAO C S, MA Y, et al. 2-phenyl-3-(p-aminophenyl) acrylonitrile: A reactive matrix for sensitive and selective analysis of glycans by MALDI-MS [J]. Analytical Chemistry, 2019, 91(14): 8801-8807. doi: 10.1021/acs.analchem.9b01434 [50] LING L, JIANG L Y, CHEN Q R, et al. Rapid and accurate profiling of oligosaccharides in beer by using a reactive matrix via MALDI-TOF MS [J]. Food Chemistry, 2021, 340: 128208. doi: 10.1016/j.foodchem.2020.128208 [51] HAO J, LU J J, XU N Y, et al. Specific oxidation pattern of soluble starch with TEMPO-NaBr-NaClO system [J]. Carbohydrate Polymers, 2016, 146: 238-244. doi: 10.1016/j.carbpol.2016.03.040 [52] KATO Y, MATSUO R, ISOGAI A. Oxidation process of water-soluble starch in TEMPO-mediated system [J]. Carbohydrate Polymers, 2003, 51(1): 69-75. doi: 10.1016/S0144-8617(02)00159-5