-
如今,人类赖以生存的水环境的污染变得日益严重,病原体在水中能够快速的传播,严重影响环境卫生和公众健康。全世界每年约有1 700万人死于环境中的致病菌引起的传染病,而且这个数字仍在增加[1]。因此,寻找高效、环保的方法来灭活水体中的病原体,已经成为了保护环境和人类健康的迫切任务。光催化是一种将太阳光能转化为化学能的环保方法,在多个领域都有广泛的应用前景[2]。近年来,光催化技术已经被广泛的应用于降解污染物[3]、灭活细菌、处理空气污染物[4]等环境净化方面。其中,光催化灭菌技术是一种绿色、高效的灭菌方法,可以杀死水体中大多数的病原微生物[5]。
氧化铟(In2O3)是p区金属氧化物中唯一对可见光有响应的N型半导体,所以关于In2O3的研究较早[6],因为其具有导电性高、催化活性较强和自由载流子迁移率高等优点,在材料领域,环境领域备受大家的关注[7]。有研究[8-9]表明,有机污染物的光催化分解、太阳能电池和气体感应等。由于In2O3独特的三维构造,立方体结构的In2O3被认为是环境中非常稳定的材料之一[10],立体三维In2O3的六个方形面在各种角度和方向上有足够大的光吸收表面,因此使它适合吸收和转换太阳能。In2O3纳米材料的制备方法虽然很简单,但是其可见光响应较差,带隙能较大导致对光能的利用率很低,只能利用太阳能的少部分波段,这样就对其实际应用产生了很大的限制[11]。
三元金属硫化物(CdIn2S4、ZnIn2S4和CuInS2)具有很强的可见光吸收能力和足够的负导带电位[12],其应用于各种光催化领域中,包括将二氧化碳通过光催化转化为碳氢化合物燃料[13]、制氢[14]、Cr(Ⅵ)光还原[15]和有机物降解[15-16]等。其中硫铟镉(Cdln2S4)因其带隙能较小和光催化性能优异的特点备受关注[17],但存在着易发生光腐蚀的缺点,限制了它的应用[18]。
黑磷(BP)作为一种新型的单元素二维(2D)材料,具有类似于石墨烯的二维片状结构,自2014年以来,引起了大家的研究兴趣[19]。作为一种不含金属的半导体,其在储存太阳能[20]、 降解污染物[21]、和光电器件中有着出色的应用[22]。在光催化方面,由于其具有带隙较窄、强大的可见光和近红外光吸收能力、低毒性和生物相容性等突出的优点,在光催化领域受到极大关注[23],这些特性使BP可以作为一种具有潜力的催化剂,用于水分离和其他光氧化反应[24]。LEE等将BP与TiO2成功复合为纳米催化剂,并应用于降解罗丹明B(RhB)中,这是关于BP光催化性能研究最早的报告[25]。但是,BP还存在着一定的缺点,其应用成本高,单一导体的光催化效率低,所以不适合作为主体材料[26-27]。
光催化材料对有机污染和菌污染处理是一种要求严格的水净化过程,因此,考虑到更大程度地利用太阳能,构筑具有良好光能利用率的异质结构是进一步提高In2O3 纳米材料光催化性能的有效方法。综上所述,本研究利用水热法制备了三元复合材料Cdln2S4/In2O3/BP,考察了其对RhB的降解性能以及E.coli的灭菌性能,并探究了不同掺杂比例的Cdln2S4对光催化性能的影响。同时基于自由基淬灭实验推测出了RhB的降解过程以及E.coli的灭活过程中可能发生的反应机制。本研究可为开发新型高效光催化剂和环保灭菌方法提供参考。
CdIn2S4/In2O3/BP复合可见光催化剂降解RhB及光催化灭活大肠杆菌
RhB photodegradation and E. coli photocatalytic sterilization by CdIn2S4/In2O3/BP composite visible photocatalysts
-
摘要: 采用水热法制备了CdIn2S4和In2O3单品催化剂以及Cdln2S4/In2O3/黑磷(BP)三元复合光催化剂。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱(FT-IR)、紫外-可见漫反射光谱(UV-vis DRS)、X射线光电子能谱(XPS)等对制备的催化剂进行表征分析。以罗丹明B(RhB)为目标降解物进行了降解实验,以大肠杆菌(E.coli)为目标进行了灭菌实验,分析了不同掺杂比例的Cdln2S4对所制备材料光催化性能的影响。从自由基捕获实验中分析出降解过程中起主要作用的活性物质。结果表明:CdIn2S4、In2O3、BP三者成功复合,复合的三元材料可提高In2O3对可见光的吸收,使其光催化活性得以增强;Cdln2S4/In2O3/BP对RhB的降解率和E.coli的灭菌率均优于单品催化剂,且5% Cdln2S4/In2O3/BP的光催化性能最好,光照120 min后,对RhB的降解率和对E.coli的灭菌率分别达到了94.7%和100%;在降解和灭菌过程中,·O2−起主导作用。
-
关键词:
- Cdln2S4/In2O3/BP复合材料 /
- 细菌灭活 /
- 光催化活性 /
- 光催化降解
Abstract: CdIn2S4, In2O3 and CdIn2S4/In2O3/BP ternary composite photocatalysts were prepared by hydrothermal method. The prepared catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and X-ray photoelectron spectroscopy (XPS). Rodamine B (RhB) and Escherichia coli (E.coli) were chosen as the target pollutants in photodegradation and sterilization experiments, respectively. The effects of different doping ratios of Cdln2S4 on the photocatalytic performance of the prepared materials were investigated. The active substances that played a major role in the degradation process were analyzed in free radical capture experiments. The results showed that CdIn2S4/In2O3/BP photocatalysts were successfully prepared. The composite ternary material improved the absorption of visible light by In2O3 and enhanced its photocatalytic activity. Compared to CdIn2S4 and In2O3, the enhanced degradation rate of RhB and the sterilization rate of E.coli occurred for CdIn2S4/In2O3/BP, and the best photocatalytic performance was 5% Cdln2S4/In2O3/BP. After 120 min illumination, the degradation rate of RhB and the sterilization rate of E.coli reached 94.7% and 100%, respectively. ·O2− played a leading role in the degradation and sterilization process. -
-
[1] WU Q, LIU X, LI B, et al. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light[J]. Journal of Materials Science and Technology, 2020, 67: 70-79. [2] LV S W, LIU J M, et al. A novel photocatalytic platform based on the newly-constructed ternary composites with a double p-n heterojunction for contaminants degradation and bacteria inactivation: ScienceDirect[J]. Chemical Engineering Journal, 2020, 409: 128269. [3] DUTTA V, SHARMA S, RAIZADA P, et al. Recent progress on bismuth-based Z-scheme semiconductor photocatalysts for energy and environmental applications[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104505. doi: 10.1016/j.jece.2020.104505 [4] GONG M, XIAO S, YUX, et al. Research progress of photocatalytic sterilization over semiconductors[J]. RSC Advances, 2019, 9(34): 19278-19284. doi: 10.1039/C9RA01826C [5] XIA P, CAO S, ZHU B, et al. Designing a 0D/2D S‐Scheme heterojunction over polymeric carbon nitride for visible‐light photocatalytic inactivation of bacteria[J]. Angewandte Chemie, 2020, 132(13): 5256-5263. doi: 10.1002/ange.201916012 [6] UDDIN A, RAUF A, WU T, et al. In2O3/oxygen doped g-C3N4 towards photocatalytic BPA degradation: Balance of oxygen between metal oxides and doped g-C3N4[J]. Journal of Colloid and Interface Science, 2021, 602: 261-273. doi: 10.1016/j.jcis.2021.06.003 [7] SAEED F, FAROOQ A, ALI A, et al. Anomalous optical behavior in pyramid-like indium oxide (In2O3) nanostructures[J]. Materials Science and Engineering B, 2020, 262: 114781. doi: 10.1016/j.mseb.2020.114781 [8] MA L, FAN H, TIAN H, et al. The n-ZnO/n-In2O3 heterojunction formed by a surface-modification and their potential barrier-control in methanal gas sensing[J]. Sensors and Actuators B-Chemical, 2016, 222: 508-516. doi: 10.1016/j.snb.2015.08.085 [9] ZHU Q, SUN Y, XU S, et al. Rational design of 3D/2D In2O3 nanocube/ZnIn2S4 nanosheet heterojunction photocatalyst with large-area "high-speed channels" for photocatalytic oxidation of 2, 4-dichlorophenol under visible light[J]. Journal of Hazardous Materials, 2020, 382: 121098. doi: 10.1016/j.jhazmat.2019.121098 [10] CAO S, LIU X, YUAN Y, et al. Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts[J]. Applied Catalysis B-Environmental, 2014, 147: 940-946. doi: 10.1016/j.apcatb.2013.10.029 [11] HOSAMANI G, JAGADALE B, MANJANNA J, et al. Room temperature ferromagnetism in Gd-doped In2O3 nanoparticles obtained by auto-combustion method[J]. Journal of Materials Science Materials in Electronics, 2020, 31: 7871-7879. doi: 10.1007/s10854-020-03325-7 [12] WANG J, SUN S, ZHOU R, et al. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4[J]. Journal of Materials Science & Technology, 2021, 78: 1-19. [13] LI X, SUN Y, XU J, et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers[J]. Nature Energy, 2019, 4(8): 690-699. doi: 10.1038/s41560-019-0431-1 [14] ZUO G, WANG Y, TEO W, et al. Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution[J]. Angewandte Chemie-International Edition, 2020, 59(28): 11287-11292. doi: 10.1002/anie.202002136 [15] ZHUGE Z, LIU X, CHEN T, et al. Highly efficient photocatalytic degradation of different hazardous contaminants by CaIn2S4-Ti3C2Tx Schottky heterojunction: An experimental and mechanism study[J]. Chemical Engineering Journal, 2021, 421: 127838. doi: 10.1016/j.cej.2020.127838 [16] GAO B, DONG S, LIU J, et al. Identification of intermediates and transformation pathways derived from photocatalytic degradation of five antibiotics on ZnIn2S4[J]. Chemical Engineering Journal, 2016, 304: 826-840. doi: 10.1016/j.cej.2016.07.029 [17] 刘慧, 任凤梅, 马海红, 等. CdIn2S4/复合材料的制备及光降解罗丹明B[J]. 环境工程学报, 2014, 8(12): 5209-5212. [18] 赵小丹, 李莉, 武纤纤, 等. 微球形CdIn2S4/ZnO复合材料的制备及其光催化性能研究[J]. 化学通报, 2021, 84(8): 820-828. [19] YIN T, LONG L, TANG X, et al. Advancing applications of black phosphorus and bp-analog materials in photo/electrocatalysis through structure engineering and surface modulation[J]. Advanced Science, 2020, 7(19): 2001431. doi: 10.1002/advs.202001431 [20] WU S, HUI K, HUI K. 2D black phosphorus: From preparation to applications for electrochemical energy storage[J]. Advanced Science, 2018, 5(5): 1700491. doi: 10.1002/advs.201700491 [21] SHEN Z, SUN S, WANG W, et al. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis[J]. Journal of Materials Chemistry A, 2015, 3(7): 3285-3288. doi: 10.1039/C4TA06871H [22] REN X, LI Z, HUANG Z, et al. Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector[J]. Advanced Functional Materials, 2017, 27(18): 1606834. [23] ZHENG Y, CHEN Y, GAO B, et al. Phosphorene-based heterostructured photocatalysts[J]. Engineering, 2021, 7(7): 991-1001. doi: 10.1016/j.eng.2021.06.004 [24] VY T, SOKLASKI R, LIANG Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 235319. doi: 10.1103/PhysRevB.89.235319 [25] LEE H, LEE S, WON J, et al. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts[J]. Scientific Reports, 2015, 5: 8691. doi: 10.1038/srep08691 [26] 沈志凯, 元勇军, 于振涛, 等. 黑磷纳米光催化材料研究进展[J]. 中国材料进展, 2021, 40(7): 493-507. doi: 10.7502/j.issn.1674-3962.202104006 [27] 李英华, 南瑞斌, 李海波, 等. 黑磷纳米片在可见光驱动下降解甲基橙的研究[J]. 安全与环境学报, 2022, 22(1): 451-457. doi: 10.13637/j.issn.1009-6094.2020.1754 [28] MOUSAVI-KAMAZANI M, SALAVATI-NIASARI M, GOUDARZI M, et al. Hydrothermal synthesis of CdIn2S4 nanostructures using new starting reagent for elevating solar cells efficiency[J]. Journal of Molecular Liquids, 2017, 242(1): 653-661. [29] ZHANG Z, HE D, et al. Synthesis of graphene/black phosphorus hybrid with highly stable P-C bond towards the enhancement of photocatalytic activity.[J]. Environmental Pollution, 2019, 245: 950-956. doi: 10.1016/j.envpol.2018.11.090 [30] YANG J, JING R, WANG P, et al. Black phosphorus nanosheets and ZnAl-LDH nanocomposite as environmental-friendly photocatalysts for the degradation of Methylene blue under visible light irradiation[J]. Applied Clay Science, 2020, 200: 105902. [31] LI Y, WANG X, et al. A novel binary visible-light-driven photocatalyst type-I CdIn2S4/g-C3N4 heterojunctions coupling with H2O2: Synthesis, characterization, photocatalytic activity for Reactive Blue 19 degradation and mechanism analysis: ScienceDirect[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 587: 124322. doi: 10.1016/j.colsurfa.2019.124322 [32] KKPA B, LSC B, SSM C, et al. In2O3 nanocapsules for rapid photodegradation of crystal violet dye under sunlight[J]. Journal of Colloid and Interface Science, 2020, 561: 287-297. doi: 10.1016/j.jcis.2019.10.101 [33] YAO R, FU X, LI W, et al. Bias stress stability of solution-processed nano indium oxide thin film transistor[J]. Micromachines, 2021, 12(2): 111. doi: 10.3390/mi12020111 [34] CHEN S, YU X, ZHANG H, et al. Preparation, characterization and activity evaluation of heterostructure In2O3/In(OH)3 photocatalyst.[J]. Journal of Hazardous Materials, 2010, 180(1-3): 735-740. doi: 10.1016/j.jhazmat.2010.04.108 [35] WANG D, WANG X, et al. Preparation of high proportion of Z-scheme Er3+: Y3Al5O12@Nb2O5/Pt/In2O3 composite for enhanced visible-light driven photocatalytic hydrogen production[J]. Materials Science and Engineering:B, 2020, 257: 114549. doi: 10.1016/j.mseb.2020.114549 [36] 张开莲, 杨凯, 李笑笑, 等. 一步水热合成In2S3/CdIn2S4异质结微球及其光催化性能[J]. 化工学报, 2020, 71(8): 3602-3613. [37] HE C, QIAN H, LI X, et al. Visible-light-driven CeO2/black phosphorus heterostructure with enhanced photocatalytic performance[J]. Journal of Materials Science:Materials in Electronics, 2019, 30: 593-599. doi: 10.1007/s10854-018-0325-1 [38] SUN M, ZHAO X, et al. Facile synthesis of hierarchical ZnIn2S4/CdIn2S4 microspheres with enhanced visible light driven photocatalytic activity[J]. Applied Surface Science, 2017, 407(Jun.15): 328-336. [39] CHEN P, GUO Z, CUI K, et al. Photo-induced degradation of norfloxacin by nanosilver modified two-dimensional black phosphorus[J]. Solid State Sciences, 2020, 103: 106188. doi: 10.1016/j.solidstatesciences.2020.106188 [40] MACHABAPHALA MK, HLEKELELE L, DLAMINI LN. A heterostructure of black phosphorus and zirconium-based MOF as a photocatalyst for photocatalytic applications: ScienceDirect[J]. Materials Letters, 2020, 281: 128660. doi: 10.1016/j.matlet.2020.128660 [41] NAHARFATEMA K, WON-CHUNOH. A comparative electrochemical study of non-enzymatic glucose, ascorbic acid, and albumin detection by using a ternary mesoporous metal oxide (ZrO2, SiO2 and In2O3) modified graphene composite based biosensor[J]. RSC Advances, 2011, 11: 4256-4269. [42] LUO W, ZEMLYANOV D, MILLIGAN C, et al. Surface chemistry of black phosphorus under a controlled oxidative environment[J]. Nanotechnology, 2016, 27(43): 434002. doi: 10.1088/0957-4484/27/43/434002 [43] ZHANG Q Q, WANG J X, YE X J, et al. Self-assembly of CdS/CdIn2S4 heterostructure with enhanced photocascade synthesis of schiff base compounds in an aromatic alcohols and nitrobenzene system with visible light[J]. ACS Applied Materials & Interfaces, 2019, 11: 46735-46745. [44] BERESTOK T, GUARDIA P, PORTALS J B, et al. Surface chemistry and nano-/microstructure engineering on photocatalytic In2S3 nanocrystals[J]. Langmuir, 2018, 34(22): 6470-6479. doi: 10.1021/acs.langmuir.8b00406 [45] YANG Y, GUAN C, CHEN S. Structural characterization and catalytic sterilization performance of a TiO2 nano-hotocatalyst[J]. Food Science and Nutrition, 2020, 8: 3638-3646. [46] ZHANG F, LI X, ZHAO Q, et al. Rational design of ZnFe2O4/In2O3 nanoheterostructures: Efficient photocatalyst for gaseous 1, 2-Dichlorobenzene degradation and mechanistic insight[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4554-4562. [47] BAI X, LI J. Photocatalytic hydrogen evolution over Cr3+ doped porous CdIn2S4 photocatalysts under visible light irradiation[J]. Advanced Materials Research, 2012, 486: 181-186. doi: 10.4028/www.scientific.net/AMR.486.181 [48] LIU H, YANG C. Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light[J]. Process Biochemistry, 2003, 39(4): .475-481. doi: 10.1016/S0032-9592(03)00084-0