[1] |
WU Q, LIU X, LI B, et al. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light[J]. Journal of Materials Science and Technology, 2020, 67: 70-79.
|
[2] |
LV S W, LIU J M, et al. A novel photocatalytic platform based on the newly-constructed ternary composites with a double p-n heterojunction for contaminants degradation and bacteria inactivation: ScienceDirect[J]. Chemical Engineering Journal, 2020, 409: 128269.
|
[3] |
DUTTA V, SHARMA S, RAIZADA P, et al. Recent progress on bismuth-based Z-scheme semiconductor photocatalysts for energy and environmental applications[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104505. doi: 10.1016/j.jece.2020.104505
|
[4] |
GONG M, XIAO S, YUX, et al. Research progress of photocatalytic sterilization over semiconductors[J]. RSC Advances, 2019, 9(34): 19278-19284. doi: 10.1039/C9RA01826C
|
[5] |
XIA P, CAO S, ZHU B, et al. Designing a 0D/2D S‐Scheme heterojunction over polymeric carbon nitride for visible‐light photocatalytic inactivation of bacteria[J]. Angewandte Chemie, 2020, 132(13): 5256-5263. doi: 10.1002/ange.201916012
|
[6] |
UDDIN A, RAUF A, WU T, et al. In2O3/oxygen doped g-C3N4 towards photocatalytic BPA degradation: Balance of oxygen between metal oxides and doped g-C3N4[J]. Journal of Colloid and Interface Science, 2021, 602: 261-273. doi: 10.1016/j.jcis.2021.06.003
|
[7] |
SAEED F, FAROOQ A, ALI A, et al. Anomalous optical behavior in pyramid-like indium oxide (In2O3) nanostructures[J]. Materials Science and Engineering B, 2020, 262: 114781. doi: 10.1016/j.mseb.2020.114781
|
[8] |
MA L, FAN H, TIAN H, et al. The n-ZnO/n-In2O3 heterojunction formed by a surface-modification and their potential barrier-control in methanal gas sensing[J]. Sensors and Actuators B-Chemical, 2016, 222: 508-516. doi: 10.1016/j.snb.2015.08.085
|
[9] |
ZHU Q, SUN Y, XU S, et al. Rational design of 3D/2D In2O3 nanocube/ZnIn2S4 nanosheet heterojunction photocatalyst with large-area "high-speed channels" for photocatalytic oxidation of 2, 4-dichlorophenol under visible light[J]. Journal of Hazardous Materials, 2020, 382: 121098. doi: 10.1016/j.jhazmat.2019.121098
|
[10] |
CAO S, LIU X, YUAN Y, et al. Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts[J]. Applied Catalysis B-Environmental, 2014, 147: 940-946. doi: 10.1016/j.apcatb.2013.10.029
|
[11] |
HOSAMANI G, JAGADALE B, MANJANNA J, et al. Room temperature ferromagnetism in Gd-doped In2O3 nanoparticles obtained by auto-combustion method[J]. Journal of Materials Science Materials in Electronics, 2020, 31: 7871-7879. doi: 10.1007/s10854-020-03325-7
|
[12] |
WANG J, SUN S, ZHOU R, et al. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4[J]. Journal of Materials Science & Technology, 2021, 78: 1-19.
|
[13] |
LI X, SUN Y, XU J, et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers[J]. Nature Energy, 2019, 4(8): 690-699. doi: 10.1038/s41560-019-0431-1
|
[14] |
ZUO G, WANG Y, TEO W, et al. Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution[J]. Angewandte Chemie-International Edition, 2020, 59(28): 11287-11292. doi: 10.1002/anie.202002136
|
[15] |
ZHUGE Z, LIU X, CHEN T, et al. Highly efficient photocatalytic degradation of different hazardous contaminants by CaIn2S4-Ti3C2Tx Schottky heterojunction: An experimental and mechanism study[J]. Chemical Engineering Journal, 2021, 421: 127838. doi: 10.1016/j.cej.2020.127838
|
[16] |
GAO B, DONG S, LIU J, et al. Identification of intermediates and transformation pathways derived from photocatalytic degradation of five antibiotics on ZnIn2S4[J]. Chemical Engineering Journal, 2016, 304: 826-840. doi: 10.1016/j.cej.2016.07.029
|
[17] |
刘慧, 任凤梅, 马海红, 等. CdIn2S4/复合材料的制备及光降解罗丹明B[J]. 环境工程学报, 2014, 8(12): 5209-5212.
|
[18] |
赵小丹, 李莉, 武纤纤, 等. 微球形CdIn2S4/ZnO复合材料的制备及其光催化性能研究[J]. 化学通报, 2021, 84(8): 820-828.
|
[19] |
YIN T, LONG L, TANG X, et al. Advancing applications of black phosphorus and bp-analog materials in photo/electrocatalysis through structure engineering and surface modulation[J]. Advanced Science, 2020, 7(19): 2001431. doi: 10.1002/advs.202001431
|
[20] |
WU S, HUI K, HUI K. 2D black phosphorus: From preparation to applications for electrochemical energy storage[J]. Advanced Science, 2018, 5(5): 1700491. doi: 10.1002/advs.201700491
|
[21] |
SHEN Z, SUN S, WANG W, et al. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis[J]. Journal of Materials Chemistry A, 2015, 3(7): 3285-3288. doi: 10.1039/C4TA06871H
|
[22] |
REN X, LI Z, HUANG Z, et al. Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector[J]. Advanced Functional Materials, 2017, 27(18): 1606834.
|
[23] |
ZHENG Y, CHEN Y, GAO B, et al. Phosphorene-based heterostructured photocatalysts[J]. Engineering, 2021, 7(7): 991-1001. doi: 10.1016/j.eng.2021.06.004
|
[24] |
VY T, SOKLASKI R, LIANG Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 235319. doi: 10.1103/PhysRevB.89.235319
|
[25] |
LEE H, LEE S, WON J, et al. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts[J]. Scientific Reports, 2015, 5: 8691. doi: 10.1038/srep08691
|
[26] |
沈志凯, 元勇军, 于振涛, 等. 黑磷纳米光催化材料研究进展[J]. 中国材料进展, 2021, 40(7): 493-507. doi: 10.7502/j.issn.1674-3962.202104006
|
[27] |
李英华, 南瑞斌, 李海波, 等. 黑磷纳米片在可见光驱动下降解甲基橙的研究[J]. 安全与环境学报, 2022, 22(1): 451-457. doi: 10.13637/j.issn.1009-6094.2020.1754
|
[28] |
MOUSAVI-KAMAZANI M, SALAVATI-NIASARI M, GOUDARZI M, et al. Hydrothermal synthesis of CdIn2S4 nanostructures using new starting reagent for elevating solar cells efficiency[J]. Journal of Molecular Liquids, 2017, 242(1): 653-661.
|
[29] |
ZHANG Z, HE D, et al. Synthesis of graphene/black phosphorus hybrid with highly stable P-C bond towards the enhancement of photocatalytic activity.[J]. Environmental Pollution, 2019, 245: 950-956. doi: 10.1016/j.envpol.2018.11.090
|
[30] |
YANG J, JING R, WANG P, et al. Black phosphorus nanosheets and ZnAl-LDH nanocomposite as environmental-friendly photocatalysts for the degradation of Methylene blue under visible light irradiation[J]. Applied Clay Science, 2020, 200: 105902.
|
[31] |
LI Y, WANG X, et al. A novel binary visible-light-driven photocatalyst type-I CdIn2S4/g-C3N4 heterojunctions coupling with H2O2: Synthesis, characterization, photocatalytic activity for Reactive Blue 19 degradation and mechanism analysis: ScienceDirect[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 587: 124322. doi: 10.1016/j.colsurfa.2019.124322
|
[32] |
KKPA B, LSC B, SSM C, et al. In2O3 nanocapsules for rapid photodegradation of crystal violet dye under sunlight[J]. Journal of Colloid and Interface Science, 2020, 561: 287-297. doi: 10.1016/j.jcis.2019.10.101
|
[33] |
YAO R, FU X, LI W, et al. Bias stress stability of solution-processed nano indium oxide thin film transistor[J]. Micromachines, 2021, 12(2): 111. doi: 10.3390/mi12020111
|
[34] |
CHEN S, YU X, ZHANG H, et al. Preparation, characterization and activity evaluation of heterostructure In2O3/In(OH)3 photocatalyst.[J]. Journal of Hazardous Materials, 2010, 180(1-3): 735-740. doi: 10.1016/j.jhazmat.2010.04.108
|
[35] |
WANG D, WANG X, et al. Preparation of high proportion of Z-scheme Er3+: Y3Al5O12@Nb2O5/Pt/In2O3 composite for enhanced visible-light driven photocatalytic hydrogen production[J]. Materials Science and Engineering:B, 2020, 257: 114549. doi: 10.1016/j.mseb.2020.114549
|
[36] |
张开莲, 杨凯, 李笑笑, 等. 一步水热合成In2S3/CdIn2S4异质结微球及其光催化性能[J]. 化工学报, 2020, 71(8): 3602-3613.
|
[37] |
HE C, QIAN H, LI X, et al. Visible-light-driven CeO2/black phosphorus heterostructure with enhanced photocatalytic performance[J]. Journal of Materials Science:Materials in Electronics, 2019, 30: 593-599. doi: 10.1007/s10854-018-0325-1
|
[38] |
SUN M, ZHAO X, et al. Facile synthesis of hierarchical ZnIn2S4/CdIn2S4 microspheres with enhanced visible light driven photocatalytic activity[J]. Applied Surface Science, 2017, 407(Jun.15): 328-336.
|
[39] |
CHEN P, GUO Z, CUI K, et al. Photo-induced degradation of norfloxacin by nanosilver modified two-dimensional black phosphorus[J]. Solid State Sciences, 2020, 103: 106188. doi: 10.1016/j.solidstatesciences.2020.106188
|
[40] |
MACHABAPHALA MK, HLEKELELE L, DLAMINI LN. A heterostructure of black phosphorus and zirconium-based MOF as a photocatalyst for photocatalytic applications: ScienceDirect[J]. Materials Letters, 2020, 281: 128660. doi: 10.1016/j.matlet.2020.128660
|
[41] |
NAHARFATEMA K, WON-CHUNOH. A comparative electrochemical study of non-enzymatic glucose, ascorbic acid, and albumin detection by using a ternary mesoporous metal oxide (ZrO2, SiO2 and In2O3) modified graphene composite based biosensor[J]. RSC Advances, 2011, 11: 4256-4269.
|
[42] |
LUO W, ZEMLYANOV D, MILLIGAN C, et al. Surface chemistry of black phosphorus under a controlled oxidative environment[J]. Nanotechnology, 2016, 27(43): 434002. doi: 10.1088/0957-4484/27/43/434002
|
[43] |
ZHANG Q Q, WANG J X, YE X J, et al. Self-assembly of CdS/CdIn2S4 heterostructure with enhanced photocascade synthesis of schiff base compounds in an aromatic alcohols and nitrobenzene system with visible light[J]. ACS Applied Materials & Interfaces, 2019, 11: 46735-46745.
|
[44] |
BERESTOK T, GUARDIA P, PORTALS J B, et al. Surface chemistry and nano-/microstructure engineering on photocatalytic In2S3 nanocrystals[J]. Langmuir, 2018, 34(22): 6470-6479. doi: 10.1021/acs.langmuir.8b00406
|
[45] |
YANG Y, GUAN C, CHEN S. Structural characterization and catalytic sterilization performance of a TiO2 nano-hotocatalyst[J]. Food Science and Nutrition, 2020, 8: 3638-3646.
|
[46] |
ZHANG F, LI X, ZHAO Q, et al. Rational design of ZnFe2O4/In2O3 nanoheterostructures: Efficient photocatalyst for gaseous 1, 2-Dichlorobenzene degradation and mechanistic insight[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4554-4562.
|
[47] |
BAI X, LI J. Photocatalytic hydrogen evolution over Cr3+ doped porous CdIn2S4 photocatalysts under visible light irradiation[J]. Advanced Materials Research, 2012, 486: 181-186. doi: 10.4028/www.scientific.net/AMR.486.181
|
[48] |
LIU H, YANG C. Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light[J]. Process Biochemistry, 2003, 39(4): .475-481. doi: 10.1016/S0032-9592(03)00084-0
|