-
养猪废水具有高
${\rm{NH}}_4^{\rm{ + }} $ -N、高COD、水质水量波动大等特点,较难实现低成本达标排放[1]。传统的生物脱氮途径为硝化-反硝化,即${\rm{NH}}_4^{\rm{ + }} $ -N先在好氧环境下被氨氧化菌(ammonia-oxidizing bacteria,AOB)氧化为${\rm{NO}}_2^ - $ -N,然后再由亚硝酸盐氧化菌(nitrite-oxidizing bacteria,NOB)氧化为${\rm{NO}}_3^ - $ -N,最后在缺氧环境下被反硝化菌还原为N2[2]。理论上,1 mg${\rm{NO}}_3^ - $ -N通过反硝化转化成N2需要消耗有机碳3.705 mg(以COD计)[3]。然而,大部分污水中的氮以${\rm{NH}}_4^{\rm{ + }} $ -N形式存在,在好氧去除${\rm{NH}}_4^{\rm{ + }} $ -N的同时,污水中的有机物被异养菌大量降解,导致反硝化由于缺少有机碳源被严重抑制[4]。例如,在进水COD与${\rm{NH}}_4^{\rm{ + }} $ -N 比值高达11.3时,同步硝化-反硝化系统才取得了较好的脱氮效果[5]。此外,我国规模化养猪场大多建有厌氧发酵装置(主要为沼气池)。厌氧处理后的沼液具有${\rm{NH}}_4^{\rm{ + }} $ -N浓度高、COD/TN低(甚至<1.0)等特点[6-7]。一些厌氧和好氧生物处理工艺可有效处理养猪废水,但存在能耗大、成本高、管理难度大等问题[8],难以在小型养猪企业推广应用。由于较低的运行成本和维护要求,表面流和水平潜流人工湿地在欧美发达国家畜禽养殖废水处理中应用案例较多[9-10],在我国也有一些示范和应用案例[11-12]。此外,垂直潜流人工湿地强化了氧在滤床中的扩散,在处理养猪废水时实现了较高的
${\rm{NH}}_4^{\rm{ + }} $ -N去除率(> 85%) [13-14]。但是,上述人工湿地较低的氧气传递速率导致系统处理效能较低[15]、占地面积过大。我国畜禽养殖企业的可用土地普遍低于欧美发达国家,这限制了传统人工湿地技术的推广应用。潮汐流人工湿地(tidal flow constructed wetland,TFCW)通过周期性的淹水-排水,有效提升了系统的供氧,从而具有通过强化好氧微生物分解和污染物与生物膜接触来提高处理效率的潜力[15]。理论上TFCW每排出1 L水可以吸入1 L空气,能为系统提供约280 mg氧气[3]。可见,TFCW的供氧量与水力负荷成正比,且基本能够满足处理生活污水时对氧气的需求。但是,这种供氧量远低于通过硝化去除1 L养猪沼液中的
${\rm{NH}}_4^{\rm{ + }} $ -N(> 200 mg)所需的氧气(> 900 mg),仍需要进一步优化。SUN等[15]采用五级串联的TFCW处理养猪废水的中试研究结果表明,系统对BOD5的总去除率高达82%,但对${\rm{NH}}_4^{\rm{ + }} $ -N的去除率和去除负荷仅为58%和14 g·(m2·d)−1。因此,采用多级潮汐流重复处理的方式对${\rm{NH}}_4^{\rm{ + }} $ -N的去除效能较低。HAN等[16]采用潮汐流-垂直潜流竖向组合的人工湿地处理养猪沼液,在水力负荷为16.7 cm·d−1的条件下,${\rm{NH}}_4^{\rm{ + }} $ -N的去除率和去除负荷分别为74%和56 g·(m2·d)−1,明显高于前人的研究结果,这与其在潮汐层采用了沸石有关。沸石具有多孔结构、大比表面积和对${\rm{NH}}_4^{\rm{ + }} $ -N良好的吸附性能,是理想的人工湿地填料之一[17],尤其适用于TFCW。间歇淹水曝气和落干通风换气是提升系统供氧的有效途径,在活性污泥系统[7]、人工湿地[18]及地下渗滤系统[19]中均有应用。然而,采用淹水曝气供氧方式,人工湿地的水力负荷和${\rm{NH}}_4^{\rm{ + }} $ -N去除负荷并未得到明显提升[20-21]。因此,有必要采用多种手段对TFCW进行优化,以期在处理养猪沼液时实现高${\rm{NH}}_4^{\rm{ + }} $ -N去除负荷。短程硝化-反硝化和短程硝化-厌氧氨氧化工艺大幅降低了对有机碳源的需求甚至几乎无需有机碳源,成为养猪废水等高氨氮废水处理研究的热点[22-23]。这类新型生物脱氮工艺成功的关键是如何稳定实现短程硝化,即通过对溶解氧(dissolved oxygen,DO)、温度、游离氨(free ammonia,FA)等关键参数的准确调控,选择性地抑制NOB而不抑制AOB[24]。有研究[25]表明,FA抑制是养猪废水等高氨氮废水实现短程硝化的主要途径。前人在这方面的研究主要集中在活性污泥系统或者曝气生物滤池[26-27],尚未见到在人工湿地中实现高效短程硝化的报道。
为此,本研究设计了一种基于沸石的间歇性曝气垂直-潮汐流人工湿地(vertical-tidal flow constructed wetland,V-TFCW)处理养猪沼液,并进行了250 d的现场小试运行,以期在高污染物负荷条件下实现稳定高效的短程硝化,为后续的厌氧氨氧化提供合适的底物。本文主要分析了水力负荷、FA和温度对V-TFCW系统短程硝化的影响,并对去除
${\rm{NH}}_4^{\rm{ + }} $ -N相关的功能基因进行了qPCR定量分析。本研究结果可为人工湿地优化及处理养猪废水等高氨氮废水提供参考。
垂直-潮汐流人工湿地处理养猪沼液: 短程硝化的实现及机理
Achievement and mechanism of partial nitrification in vertical-tidal flow constructed wetland treating anaerobically-digested swine wastewater
-
摘要: 养猪沼液具有高
${\rm{NH}}_4^{\rm{ + }} $ -N、低碳氮比的特点,难以实现低成本、高效率处理。以沸石为基质,设计了一种间歇性曝气垂直-潮汐流人工湿地用于处理养猪沼液,以期在高污染物负荷下实现短程硝化,为厌氧氨氧化提供合适底物。结果表明,系统在20 d左右启动短程硝化,出水${\rm{NO}}_2^ - $ -N浓度达375 mg·L−1。在系统稳定运行期间,${\rm{NH}}_4^{\rm{ + }} $ -N去除负荷高达343 g·(m2·d)−1,且${\rm{NO}}_2^ - $ -N累积率始终高于90%,显示了系统良好的短程硝化性能,出水${\rm{NO}}_2^ - $ -N/${\rm{NH}}_4^{\rm{ + }} $ -N比可满足厌氧氨氧化需求。低温会显著抑制系统短程硝化(P<0.01),随着温度回升,短程硝化性能明显好转。游离氨抑制和养猪沼液良好的pH缓冲能力是本系统实现短程硝化的关键因素,而沸石对${\rm{NH}}_4^{\rm{ + }} $ -N的吸附、系统结构及运行方式有助于实现高效的短程硝化。qPCR研究结果表明,系统中amoA丰度远高于nxrA丰度,证实亚硝酸盐氧化菌被抑制。以上研究结果可为人工湿地优化及其在养猪沼液处理中的应用提供参考。Abstract: The anaerobically-digested swine wastewater (ADSW) is characterized by the high concentration of${\rm{NH}}_4^{\rm{ + }} $ -N and low carbon/nitrogen ratio, making it a challenge to remove nitrogen with low-cost and high-efficiency. An intermittent aeration vertical-tidal flow constructed wetland (V-TFCW) employing zeolite as a substrate was designed to treat ADSW in order to achieve partial nitrification (PN) under high pollutant loading rate and provide suitable substrates for anammox. During the start-up stage, PN was successfully achieved within about 20 days, the${\rm{NO}}_2^ - $ -N in the effluent was up to 375 mg·L−1. During the stable operating stage, the${\rm{NH}}_4^{\rm{ + }} $ -N removal rate was up to 343 g·(m2·d)−1, and the nitrite accumulation rate was always higher than 90%, demonstrating the excellent PN performance of the V-TFCW. Furthermore, the effluent${\rm{NO}}_2^ - $ -N/${\rm{NH}}_4^{\rm{ + }} $ -N ratio could meet the demand of anammox. PN was significantly inhibited due to the low temperature, while it improved obviously with the rise of temperature. Analysis of the PN mechanism showed that free ammonia inhibition and the strong pH buffer capacity of ADSW were vital to achieving PN in V-TFCW. Moreover, adsorption of${\rm{NH}}_4^{\rm{ + }} $ -N by zeolite, system structure, and operation mode contributed to the efficient PN. The qPCR data demonstrated that the abundances of amoA were much higher than those of nxrA in V-TFCW, confirming the inhibition of nitrite-oxidizing bacteria. This study provides references for the optimization of constructed wetland and its applications in the treatment of ADSW. -
表 1 qPCR引物序列
Table 1. Primer sequences of qPCR
名称 目标基因 引物 序列(5′-3′) 来源 细菌 bacteria 16S rRNA 16S-F TGTGTAGCGGTGAAATGCG [29] 16S-R CATCGTTTACGGCGTGGAC AOB amoA amoA-1F GGGGTTTCTACTGGTGGT [30] amoA-2R CCCCTCKGSAAAGCCTTCTTC NOB nxrA F1norA CAGACCGACGTGTGCGAAAG [31] R1norA TCYACAAGGAACGGAAGGTC 厌氧氨氧化菌 anammox 16S rRNA Brod541F GAGCACGTAGGTGGGTTTGT [32] AMX820R AAAACCCCTCTACTTAGTGCCC 表 2 混凝预处理及V-TFCW进出水水质
Table 2. Influent and effluent quality of the coagulation pretreatment unit and V-TFCW at different stages
运行阶段 分析样品 pH 污染物浓度/(mg·L−1) 污染物去除率/% COD/TINa ${\rm{NH}}_4^{\rm{ + }} $ -N${\rm{NO}}_3^ - $ -N${\rm{NO}}_2^ - $ -NCOD TP ${\rm{NH}}_4^{\rm{ + }} $ -NCOD TP 混凝预处理系统 沼液 7.78 846 2.49 0.22 747 53.5 — — — 0.90 (0.26)b (219) (3.04) (0.15) (221) (10.7) (0.20) 混凝出水 8.02 734 2.60 0.26 465 14.9 11.9 36.7 72.1 0.63 (0.25) (157) (3.02) (0.64) (159) (6.26) (10.6) (15.0) (10.7) (0.14) 阶段1 进水 7.78 643 1.73 0.01 561 15.9 — — — 0.88 (0.18) (49.4) (0.70) (0.00) (33.9) (3.26) (0.12) 出水 8.52 11.6 0.64 188 206 2.89 98.2 63.1 82.8 11.0 (0.61) (1.75) (0.83) (265) (42.8) (1.93) (0.41) (9.84) (8.60) (15.0) 阶段2 进水 8.10 760 2.02 0.29 500 16.1 — — — 0.65 (0.24) (166) (2.62) (0.74) (176) (6.80) (0.13) 出水 7.03 241 16.0 446 290 12.5 70.9 44.4 25.6 0.40 (0.43) (166) (14.6) (107) (157) (5.16) (19.2) (20.9) (16.3) (0.14) 阶段3 进水 7.92 704 3.96 0.26 370 12.16 — — — 0.53 (0.23) (154) (3.83) (0.53) (87.0) (5.22) (0.07) 出水 8.50 438 13.1 112 262 12.1 38.0 31.8 20.4 0.51 (0.25) (149) (12.9) (52.4) (51.5) (7.21) (13.6) (15.3) (19.5) (0.19) 注:a为TIN为总无机氮(total inorganic nitrogen),即 ${\rm{NH}}_4^{\rm{ + }} $ -N、${\rm{NO}}_3^ - $ -N和${\rm{NO}}_2^ - $ -N之和;b为“()”内为对应值标准差。表 3 不同类型人工湿地处理养猪废水概况
Table 3. Treatment of swine wastewater by different types of constructed wetlands
湿地类型 基质类型 HLR/
(cm·d−1)HRT/d 进水 ${\rm{NH}}_4^{\rm{ + }} $ -N/
(mg·L−1)${\rm{NO}}_2^ - $ -N/
(mg·L−1)NAR/
%ALRb/
(g·(m2·d)−1)ARR/
(g·(m2·d)−1)${\rm{NH}}_4^{\rm{ + }} $ -N 去
除率/%来源 水平潜流人工湿地 砾石 6 8.5 185 — — 11 2.42 22 [50] 多级表面流人工湿地 稻田土壤 1.25 32 700 — — 7.89 7.75 98.2 [8] 垂直潜流人工湿地 花岗岩 0.38 — 212 — — 0.6 0.58 97.0 [13] 三级垂直潜流人工湿地 砾石、砖渣、
沸石/石灰石a4.7 — 155 8 — 7.3 4.0 55.3 [53] 垂直潜流人工湿地 沸石/海蛎壳/砖渣 2.0 — 786 — — 15.7 13.3 84.6 [14] 曝气垂直潜流人工湿地 生物炭/砾石 6.4 3 150 — — 9.59 8.50 88.6 [20] 曝气垂直潜流+水平潜流组合人工湿地 砾石 1.7 — 792 — — 13.2 13.15 99.6 [21] 复合型人工湿地 火山岩 0.7 — 1 164 — — 8 7 80 [54] 复合型人工湿地 沸石、砾石 3.8 4 448 — — 27.3 17.2 63.0 [55] 复合型人工湿地 煤渣、砾石、粗砂 1.96 0.27 540 — — 10.6 10.5 98.8 [56] 循环流人工湿地 砾石、煤渣 0.33 7 800 — — 2.0 1.52 76 [57] 间歇曝气潮汐-垂直潜
流人工湿地脱水污泥DAS 8.8 — 435 — — 38.5 37.3 97 [52] 潮汐-垂直潜流人工湿地 沸石/石灰石、
砖渣16.7 2.76 157 20 — 76.7 56.0 73.0 [16] 复合垂直流人工湿地 沸石 4 7 700 — — 18.7 18.4 >95 [51] 垂直-潮汐流人工湿地 沸石 66 0.1 760 446 >90 502 343 70.9 本研究 注:a:基质类型中“、”表示分层填料,“/”表示混合填料;b:ALR为氨氮表面负荷(ammonia loading rate)。 -
[1] 姜超, 隋倩雯, 陈梅雪, 等. 实时控制序批式膜生物反应器处理养猪废水的短程硝化[J]. 环境工程学报, 2017, 11(11): 5868-5876. doi: 10.12030/j.cjee.201604195 [2] PAN Y T, LIU Y W, PENG L, et al. Substrate diffusion within biofilms significantly influencing the electron competition during denitrification[J]. Environmental Science & Technology, 2019, 53(1): 261-269. [3] ZHAN X, YANG Y Q, CHEN F R, et al. Treatment of secondary effluent by a novel tidal-integrated vertical flow constructed wetland using raw sewage as a carbon source: Contribution of partial denitrification-anammox[J]. Chemical Engineering Journal, 2020, 395: 125165. doi: 10.1016/j.cej.2020.125165 [4] 张玲玲, 杨永强, 张权, 等. 组合型人工湿地对二级好氧单元出水的深度处理[J]. 环境工程学报, 2019, 13(7): 1592-1601. doi: 10.12030/j.cjee.201811083 [5] IANNACONE F, CAPUA F D, GRANATA F, et al. Effect of carbon-to-nitrogen ratio on simultaneous nitrification denitrification and phosphorus removal in a microaerobic moving bed biofilm reactor[J]. Journal of Environmental Management, 2019, 250: 109518. doi: 10.1016/j.jenvman.2019.109518 [6] 曾凤, 霍守亮, 刘俊, 等. 猪场废水厌氧发酵液循环脱氮工艺[J]. 环境工程学报, 2012, 6(9): 2941-2946. [7] 董宝刚, 宋小燕, 刘锐, 等. 间歇曝气SBR与传统SBR处理养猪沼液的比较研究[J]. 环境科学, 2016, 37(11): 4309-4316. [8] LI X, LI Y Y, LI Y, et al. Enhanced nitrogen removal and quantitative analysis of removal mechanism in multistage surface flow constructed wetlands for the large-scale treatment of swine wastewater[J]. Journal of Environmental Management, 2019, 246: 575-582. [9] HEALY M G, RODGERS M, MULQUEEN J. Treatment of dairy wastewater using constructed wetlands and intermittent sand filters[J]. Bioresource Technology, 2007, 98(12): 2268-2281. doi: 10.1016/j.biortech.2006.07.036 [10] KNIGHT R L, PAYNE V W E, BORER R E, et al. Constructed wetlands for livestock wastewater management[J]. Ecological Engineering, 2000, 15(1/2): 41-55. doi: 10.1016/S0925-8574(99)00034-8 [11] ZHANG M M, LUO P, LIU F, et al. Nitrogen removal and distribution of ammonia-oxidizing and denitrifying genes in an integrated constructed wetland for swine wastewater treatment[J]. Ecological Engineering, 2017, 104: 30-38. doi: 10.1016/j.ecoleng.2017.04.022 [12] LIU F, ZHANG S N, LUO P, et al. Purification and reuse of non-point source wastewater via Myriophyllum-based integrative biotechnology: A review[J]. Bioresource Technology, 2018, 248: 3-11. doi: 10.1016/j.biortech.2017.07.181 [13] VAZQUEZ M A, VARGA D D L, PLANA R, et al. Vertical flow constructed wetland treating high strength wastewater from swine slurry composting[J]. Ecological Engineering, 2013, 50: 37-43. doi: 10.1016/j.ecoleng.2012.06.038 [14] 李鹏宇, 王振, 袁林江, 等. 不同类型潜流湿地处理养猪废水的对比[J]. 环境工程学报, 2013, 7(4): 1341-1345. [15] SUN G, ZHAO Y, ALLEN S, et al. Generating “tide” in pilot-scale constructed wetlands to enhance agricultural wastewater treatment[J]. Engineering in Life Sciences, 2006, 6(6): 560-565. doi: 10.1002/elsc.200620156 [16] HAN Z F, DONG J, SHEN Z Q, et al. Nitrogen removal of anaerobically digested swine wastewater by pilot-scale tidal flow constructed wetland based on in-situ biological regeneration of zeolite[J]. Chemosphere, 2019, 217: 364-373. doi: 10.1016/j.chemosphere.2018.11.036 [17] LIU M H, WU S B, CHEN L, et al. How substrate influences nitrogen transformations in tidal flow constructed wetlands treating high ammonium wastewater?[J]. Ecological Engineering, 2014, 73: 478-486. doi: 10.1016/j.ecoleng.2014.09.111 [18] WU H M, FAN J L, ZHANG J, et al. Optimization of organics and nitrogen removal in intermittently aerated vertical flow constructed wetlands: Effects of aeration time and aeration rate[J]. International Biodeterioration & Biodegradation, 2016, 113: 139-145. [19] YANG Y Q, ZHAN X, WU S J, et al. Effect of hydraulic loading rate on pollutant removal efficiency in subsurface infiltration system under intermittent operation and micro-power aeration[J]. Bioresource Technology, 2016, 205: 174-182. doi: 10.1016/j.biortech.2015.12.088 [20] FENG L K, WANG R G, JIA L X, et al. Can biochar application improve nitrogen removal in constructed wetlands for treating anaerobically-digested swine wastewater?[J]. Chemical Engineering Journal, 2020: 379. [21] MASI F, RIZZO A, MARTINUZZI N, et al. Upflow anaerobic sludge blanket and aerated constructed wetlands for swine wastewater treatment: A pilot study[J]. Water Science and Technology, 2017, 76(1): 68-78. doi: 10.2166/wst.2017.180 [22] 杜龑, 周北海, 袁蓉芳, 等. UASB-SBR工艺处理规模化畜禽养殖废水[J]. 环境工程学报, 2018, 12(2): 497-504. doi: 10.12030/j.cjee.201708147 [23] ISHIMOTO C, SUGIYAMA T, MATSUMOTO T, et al. Full-scale simultaneous partial nitrification, anammox, and denitrification process for treating swine wastewater[J]. Water Science and Technology, 2020, 81(3): 456-465. doi: 10.2166/wst.2020.120 [24] 高军军, 钱飞跃, 王建芳, 等. 利用好氧颗粒污泥持续增殖启动高性能亚硝化反应器[J]. 环境科学, 2017, 38(9): 3787-3792. [25] 张树军, 马富国, 曹相生, 等. 低C/N高氨氮消化污泥脱水液部分亚硝化研究[J]. 环境科学, 2009, 30(6): 1695-1700. doi: 10.3321/j.issn:0250-3301.2009.06.023 [26] YANG Y Y, CHEN Z G, WANG X J, et al. Partial nitrification performance and mechanism of zeolite biological aerated filter for ammonium wastewater treatment[J]. Bioresource Technology, 2017, 241: 473-481. doi: 10.1016/j.biortech.2017.05.151 [27] WEI D, NGO H H, GUO W, et al. Partial nitrification granular sludge reactor as a pretreatment for anaerobic ammonium oxidation (Anammox): Achievement, performance and microbial community[J]. Bioresource Technology, 2018, 269: 25-31. doi: 10.1016/j.biortech.2018.08.088 [28] ANTHONISEN A C, LOEHR R C, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous-acid[J]. Journal Water Pollution Control Federation, 1976, 48(5): 835-852. [29] LIU M, GILL J J, YOUNG R, et al. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge[J]. Scientific Reports, 2015, 5: 13754. doi: 10.1038/srep13754 [30] ROTTHAUWE J H, WITZEL K P, LIESACK W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied and Environmental Microbiology, 1997, 63(12): 4704-4712. doi: 10.1128/AEM.63.12.4704-4712.1997 [31] ATTARD E, POLY F, COMMEAUX C, et al. Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices[J]. Environmental Microbiology, 2010, 12(2): 315-326. doi: 10.1111/j.1462-2920.2009.02070.x [32] HAN P, HUANG Y T, LIN J G, et al. A comparison of two 16S rRNA gene-based PCR primer sets in unraveling anammox bacteria from different environmental samples[J]. Applied Microbiology and Biotechnology, 2013, 97(24): 10521-10529. doi: 10.1007/s00253-013-5305-z [33] 边武英, 金娟, 叶波, 等. 清粪工艺对规模化沼气工程沼液养分含量的影响[J]. 浙江农业科学, 2017, 58(11): 1993-1996. [34] KARADAG D, KOC Y, TURAN M, et al. Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite[J]. Journal of Hazardous Materials, 2006, 136(3): 604-609. doi: 10.1016/j.jhazmat.2005.12.042 [35] XUE Y, YANG F L, LIU S T, et al. The influence of controlling factors on the start-up and operation for partial nitrification in membrane bioreactor[J]. Bioresource Technology, 2009, 100(3): 1055-1060. doi: 10.1016/j.biortech.2008.07.052 [36] 陈伟华, 陈同辉, 陈洪斌, 等. 悬浮填料生物膜反应器处理黑水的启动挂膜[J]. 环境工程学报, 2016, 10(2): 566-572. [37] DELATOLLA R, TUFENKJI N, COMEAU Y, et al. Kinetic analysis of attached growth nitrification in cold climates[J]. Water Science and Technology, 2009, 60(5): 1173-1184. doi: 10.2166/wst.2009.419 [38] 王思萌, 苗圆圆, 彭永臻. 低温投加短程硝化污泥下城市污水SPN/A工艺运行特性[J]. 中国环境科学, 2019, 39(4): 1456-1463. doi: 10.3969/j.issn.1000-6923.2019.04.013 [39] 赵昕燕, 卞伟, 侯爱月, 等. 季节性温度对短程硝化系统微生物群落的影响[J]. 中国环境科学, 2017, 37(4): 1366-1374. doi: 10.3969/j.issn.1000-6923.2017.04.021 [40] STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596. doi: 10.1007/s002530051340 [41] JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process: A review[J]. Chemical Engineering Journal, 2012, 197: 67-79. doi: 10.1016/j.cej.2012.05.014 [42] VADIVELU V M, KELLER J, YUAN Z G. Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture[J]. Biotechnology and Bioengineering, 2006, 95(5): 830-839. doi: 10.1002/bit.21018 [43] BLACKBURNE R, YUAN Z G, KELLER J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor[J]. Biodegradation, 2008, 19(2): 303-312. doi: 10.1007/s10532-007-9136-4 [44] SEUNTJENS D, VAN TENDELOO M, CHATZIGIANNIDOU I, et al. Synergistic exposure of return-sludge to anaerobic starvation, sulfide, and free ammonia to suppress nitrite oxidizing bacteria[J]. Environmental Science & Technology, 2018, 52(15): 8725-8732. [45] CHUNG J, BAE W, LEE Y W, et al. Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors[J]. Process Biochemistry, 2007, 42(3): 320-328. doi: 10.1016/j.procbio.2006.09.002 [46] VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380(1-3): 48-65. doi: 10.1016/j.scitotenv.2006.09.014 [47] SUN G, GRAY K R, BIDDLESTONE A J, et al. Treatment of agricultural wastewater in a combined tidal flow-downflow reed bed system[J]. Water Science and Technology, 1999, 40(3): 139-146. doi: 10.2166/wst.1999.0154 [48] WANG J L, YANG N. Partial nitrification under limited dissolved oxygen conditions[J]. Process Biochemistry, 2004, 39(10): 1223-1229. doi: 10.1016/S0032-9592(03)00249-8 [49] CHEN J, WANG X J, CHEN Z G, et al. Application of a synthetic zeolite as a storage medium in SBRs to achieve the stable partial nitrification of ammonium[J]. Environmental Science Water Research & Technology, 2019, 5(2): 287-295. [50] LEE C Y, LEE C C, LEE F Y, et al. Performance of subsurface flow constructed wetland taking pretreated swine effluent under heavy loads[J]. Bioresource Technology, 2004, 92(2): 173-179. doi: 10.1016/j.biortech.2003.08.012 [51] DU L, ZHAO Y, WANG C, et al. Effects of plant on denitrification pathways in integrated vertical-flow constructed wetland treating swine wastewater[J]. Ecotoxicology and Environmental Safety, 2020, 201: 110752. doi: 10.1016/j.ecoenv.2020.110752 [52] 胡沅胜, 赵亚乾, 赵晓红, 等. 间歇曝气铝污泥基质人工湿地处理高浓度养猪废水[J]. 中国给水排水, 2015, 31(17): 124-128. [53] 牟锐, 沈志强, 周岳溪, 等. 生物沸石人工湿地处理分散养猪冲洗水性能[J]. 环境科学, 2016, 37(9): 3508-3517. [54] ZHANG X, INOUE T, KATO K, et al. Performance of hybrid subsurface constructed wetland system for piggery wastewater treatment[J]. Water Science and Technology, 2016, 73(1): 13-20. doi: 10.2166/wst.2015.457 [55] BORIN M, POLITEO M, DE STEFANI G. Performance of a hybrid constructed wetland treating piggery wastewater[J]. Ecological Engineering, 2013, 51: 229-236. doi: 10.1016/j.ecoleng.2012.12.064 [56] 刘小真, 石湖泉, 陈福根. 人工湿地对规模化养猪废水处理效果评价[J]. 生态环境学报, 2018, 27(11): 2110-2116. [57] 高红杰, 彭剑峰, 宋永会, 等. 铵饱和天然钙型沸石基质人工湿地对模拟养猪废水的处理效能[J]. 环境保护科学, 2010, 36(6): 14-16. doi: 10.3969/j.issn.1004-6216.2010.06.005 [58] ZHI W, JI G D. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J]. Water Research, 2014, 64: 32-41. doi: 10.1016/j.watres.2014.06.035 [59] SUZUKI I, DULAR U, KWOK S C. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas-Europaea cells and extracts[J]. Journal of Bacteriology, 1974, 120(1): 556-558. doi: 10.1128/JB.120.1.556-558.1974 [60] JETTEN M S M, NIFTRIK L V, STROUS M, et al. Biochemistry and molecular biology of anammox bacteria[J]. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44(2/3): 65-84.