[1] |
姜超, 隋倩雯, 陈梅雪, 等. 实时控制序批式膜生物反应器处理养猪废水的短程硝化[J]. 环境工程学报, 2017, 11(11): 5868-5876. doi: 10.12030/j.cjee.201604195
|
[2] |
PAN Y T, LIU Y W, PENG L, et al. Substrate diffusion within biofilms significantly influencing the electron competition during denitrification[J]. Environmental Science & Technology, 2019, 53(1): 261-269.
|
[3] |
ZHAN X, YANG Y Q, CHEN F R, et al. Treatment of secondary effluent by a novel tidal-integrated vertical flow constructed wetland using raw sewage as a carbon source: Contribution of partial denitrification-anammox[J]. Chemical Engineering Journal, 2020, 395: 125165. doi: 10.1016/j.cej.2020.125165
|
[4] |
张玲玲, 杨永强, 张权, 等. 组合型人工湿地对二级好氧单元出水的深度处理[J]. 环境工程学报, 2019, 13(7): 1592-1601. doi: 10.12030/j.cjee.201811083
|
[5] |
IANNACONE F, CAPUA F D, GRANATA F, et al. Effect of carbon-to-nitrogen ratio on simultaneous nitrification denitrification and phosphorus removal in a microaerobic moving bed biofilm reactor[J]. Journal of Environmental Management, 2019, 250: 109518. doi: 10.1016/j.jenvman.2019.109518
|
[6] |
曾凤, 霍守亮, 刘俊, 等. 猪场废水厌氧发酵液循环脱氮工艺[J]. 环境工程学报, 2012, 6(9): 2941-2946.
|
[7] |
董宝刚, 宋小燕, 刘锐, 等. 间歇曝气SBR与传统SBR处理养猪沼液的比较研究[J]. 环境科学, 2016, 37(11): 4309-4316.
|
[8] |
LI X, LI Y Y, LI Y, et al. Enhanced nitrogen removal and quantitative analysis of removal mechanism in multistage surface flow constructed wetlands for the large-scale treatment of swine wastewater[J]. Journal of Environmental Management, 2019, 246: 575-582.
|
[9] |
HEALY M G, RODGERS M, MULQUEEN J. Treatment of dairy wastewater using constructed wetlands and intermittent sand filters[J]. Bioresource Technology, 2007, 98(12): 2268-2281. doi: 10.1016/j.biortech.2006.07.036
|
[10] |
KNIGHT R L, PAYNE V W E, BORER R E, et al. Constructed wetlands for livestock wastewater management[J]. Ecological Engineering, 2000, 15(1/2): 41-55. doi: 10.1016/S0925-8574(99)00034-8
|
[11] |
ZHANG M M, LUO P, LIU F, et al. Nitrogen removal and distribution of ammonia-oxidizing and denitrifying genes in an integrated constructed wetland for swine wastewater treatment[J]. Ecological Engineering, 2017, 104: 30-38. doi: 10.1016/j.ecoleng.2017.04.022
|
[12] |
LIU F, ZHANG S N, LUO P, et al. Purification and reuse of non-point source wastewater via Myriophyllum-based integrative biotechnology: A review[J]. Bioresource Technology, 2018, 248: 3-11. doi: 10.1016/j.biortech.2017.07.181
|
[13] |
VAZQUEZ M A, VARGA D D L, PLANA R, et al. Vertical flow constructed wetland treating high strength wastewater from swine slurry composting[J]. Ecological Engineering, 2013, 50: 37-43. doi: 10.1016/j.ecoleng.2012.06.038
|
[14] |
李鹏宇, 王振, 袁林江, 等. 不同类型潜流湿地处理养猪废水的对比[J]. 环境工程学报, 2013, 7(4): 1341-1345.
|
[15] |
SUN G, ZHAO Y, ALLEN S, et al. Generating “tide” in pilot-scale constructed wetlands to enhance agricultural wastewater treatment[J]. Engineering in Life Sciences, 2006, 6(6): 560-565. doi: 10.1002/elsc.200620156
|
[16] |
HAN Z F, DONG J, SHEN Z Q, et al. Nitrogen removal of anaerobically digested swine wastewater by pilot-scale tidal flow constructed wetland based on in-situ biological regeneration of zeolite[J]. Chemosphere, 2019, 217: 364-373. doi: 10.1016/j.chemosphere.2018.11.036
|
[17] |
LIU M H, WU S B, CHEN L, et al. How substrate influences nitrogen transformations in tidal flow constructed wetlands treating high ammonium wastewater?[J]. Ecological Engineering, 2014, 73: 478-486. doi: 10.1016/j.ecoleng.2014.09.111
|
[18] |
WU H M, FAN J L, ZHANG J, et al. Optimization of organics and nitrogen removal in intermittently aerated vertical flow constructed wetlands: Effects of aeration time and aeration rate[J]. International Biodeterioration & Biodegradation, 2016, 113: 139-145.
|
[19] |
YANG Y Q, ZHAN X, WU S J, et al. Effect of hydraulic loading rate on pollutant removal efficiency in subsurface infiltration system under intermittent operation and micro-power aeration[J]. Bioresource Technology, 2016, 205: 174-182. doi: 10.1016/j.biortech.2015.12.088
|
[20] |
FENG L K, WANG R G, JIA L X, et al. Can biochar application improve nitrogen removal in constructed wetlands for treating anaerobically-digested swine wastewater?[J]. Chemical Engineering Journal, 2020: 379.
|
[21] |
MASI F, RIZZO A, MARTINUZZI N, et al. Upflow anaerobic sludge blanket and aerated constructed wetlands for swine wastewater treatment: A pilot study[J]. Water Science and Technology, 2017, 76(1): 68-78. doi: 10.2166/wst.2017.180
|
[22] |
杜龑, 周北海, 袁蓉芳, 等. UASB-SBR工艺处理规模化畜禽养殖废水[J]. 环境工程学报, 2018, 12(2): 497-504. doi: 10.12030/j.cjee.201708147
|
[23] |
ISHIMOTO C, SUGIYAMA T, MATSUMOTO T, et al. Full-scale simultaneous partial nitrification, anammox, and denitrification process for treating swine wastewater[J]. Water Science and Technology, 2020, 81(3): 456-465. doi: 10.2166/wst.2020.120
|
[24] |
高军军, 钱飞跃, 王建芳, 等. 利用好氧颗粒污泥持续增殖启动高性能亚硝化反应器[J]. 环境科学, 2017, 38(9): 3787-3792.
|
[25] |
张树军, 马富国, 曹相生, 等. 低C/N高氨氮消化污泥脱水液部分亚硝化研究[J]. 环境科学, 2009, 30(6): 1695-1700. doi: 10.3321/j.issn:0250-3301.2009.06.023
|
[26] |
YANG Y Y, CHEN Z G, WANG X J, et al. Partial nitrification performance and mechanism of zeolite biological aerated filter for ammonium wastewater treatment[J]. Bioresource Technology, 2017, 241: 473-481. doi: 10.1016/j.biortech.2017.05.151
|
[27] |
WEI D, NGO H H, GUO W, et al. Partial nitrification granular sludge reactor as a pretreatment for anaerobic ammonium oxidation (Anammox): Achievement, performance and microbial community[J]. Bioresource Technology, 2018, 269: 25-31. doi: 10.1016/j.biortech.2018.08.088
|
[28] |
ANTHONISEN A C, LOEHR R C, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous-acid[J]. Journal Water Pollution Control Federation, 1976, 48(5): 835-852.
|
[29] |
LIU M, GILL J J, YOUNG R, et al. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge[J]. Scientific Reports, 2015, 5: 13754. doi: 10.1038/srep13754
|
[30] |
ROTTHAUWE J H, WITZEL K P, LIESACK W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied and Environmental Microbiology, 1997, 63(12): 4704-4712. doi: 10.1128/AEM.63.12.4704-4712.1997
|
[31] |
ATTARD E, POLY F, COMMEAUX C, et al. Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices[J]. Environmental Microbiology, 2010, 12(2): 315-326. doi: 10.1111/j.1462-2920.2009.02070.x
|
[32] |
HAN P, HUANG Y T, LIN J G, et al. A comparison of two 16S rRNA gene-based PCR primer sets in unraveling anammox bacteria from different environmental samples[J]. Applied Microbiology and Biotechnology, 2013, 97(24): 10521-10529. doi: 10.1007/s00253-013-5305-z
|
[33] |
边武英, 金娟, 叶波, 等. 清粪工艺对规模化沼气工程沼液养分含量的影响[J]. 浙江农业科学, 2017, 58(11): 1993-1996.
|
[34] |
KARADAG D, KOC Y, TURAN M, et al. Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite[J]. Journal of Hazardous Materials, 2006, 136(3): 604-609. doi: 10.1016/j.jhazmat.2005.12.042
|
[35] |
XUE Y, YANG F L, LIU S T, et al. The influence of controlling factors on the start-up and operation for partial nitrification in membrane bioreactor[J]. Bioresource Technology, 2009, 100(3): 1055-1060. doi: 10.1016/j.biortech.2008.07.052
|
[36] |
陈伟华, 陈同辉, 陈洪斌, 等. 悬浮填料生物膜反应器处理黑水的启动挂膜[J]. 环境工程学报, 2016, 10(2): 566-572.
|
[37] |
DELATOLLA R, TUFENKJI N, COMEAU Y, et al. Kinetic analysis of attached growth nitrification in cold climates[J]. Water Science and Technology, 2009, 60(5): 1173-1184. doi: 10.2166/wst.2009.419
|
[38] |
王思萌, 苗圆圆, 彭永臻. 低温投加短程硝化污泥下城市污水SPN/A工艺运行特性[J]. 中国环境科学, 2019, 39(4): 1456-1463. doi: 10.3969/j.issn.1000-6923.2019.04.013
|
[39] |
赵昕燕, 卞伟, 侯爱月, 等. 季节性温度对短程硝化系统微生物群落的影响[J]. 中国环境科学, 2017, 37(4): 1366-1374. doi: 10.3969/j.issn.1000-6923.2017.04.021
|
[40] |
STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596. doi: 10.1007/s002530051340
|
[41] |
JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process: A review[J]. Chemical Engineering Journal, 2012, 197: 67-79. doi: 10.1016/j.cej.2012.05.014
|
[42] |
VADIVELU V M, KELLER J, YUAN Z G. Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture[J]. Biotechnology and Bioengineering, 2006, 95(5): 830-839. doi: 10.1002/bit.21018
|
[43] |
BLACKBURNE R, YUAN Z G, KELLER J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor[J]. Biodegradation, 2008, 19(2): 303-312. doi: 10.1007/s10532-007-9136-4
|
[44] |
SEUNTJENS D, VAN TENDELOO M, CHATZIGIANNIDOU I, et al. Synergistic exposure of return-sludge to anaerobic starvation, sulfide, and free ammonia to suppress nitrite oxidizing bacteria[J]. Environmental Science & Technology, 2018, 52(15): 8725-8732.
|
[45] |
CHUNG J, BAE W, LEE Y W, et al. Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors[J]. Process Biochemistry, 2007, 42(3): 320-328. doi: 10.1016/j.procbio.2006.09.002
|
[46] |
VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380(1-3): 48-65. doi: 10.1016/j.scitotenv.2006.09.014
|
[47] |
SUN G, GRAY K R, BIDDLESTONE A J, et al. Treatment of agricultural wastewater in a combined tidal flow-downflow reed bed system[J]. Water Science and Technology, 1999, 40(3): 139-146. doi: 10.2166/wst.1999.0154
|
[48] |
WANG J L, YANG N. Partial nitrification under limited dissolved oxygen conditions[J]. Process Biochemistry, 2004, 39(10): 1223-1229. doi: 10.1016/S0032-9592(03)00249-8
|
[49] |
CHEN J, WANG X J, CHEN Z G, et al. Application of a synthetic zeolite as a storage medium in SBRs to achieve the stable partial nitrification of ammonium[J]. Environmental Science Water Research & Technology, 2019, 5(2): 287-295.
|
[50] |
LEE C Y, LEE C C, LEE F Y, et al. Performance of subsurface flow constructed wetland taking pretreated swine effluent under heavy loads[J]. Bioresource Technology, 2004, 92(2): 173-179. doi: 10.1016/j.biortech.2003.08.012
|
[51] |
DU L, ZHAO Y, WANG C, et al. Effects of plant on denitrification pathways in integrated vertical-flow constructed wetland treating swine wastewater[J]. Ecotoxicology and Environmental Safety, 2020, 201: 110752. doi: 10.1016/j.ecoenv.2020.110752
|
[52] |
胡沅胜, 赵亚乾, 赵晓红, 等. 间歇曝气铝污泥基质人工湿地处理高浓度养猪废水[J]. 中国给水排水, 2015, 31(17): 124-128.
|
[53] |
牟锐, 沈志强, 周岳溪, 等. 生物沸石人工湿地处理分散养猪冲洗水性能[J]. 环境科学, 2016, 37(9): 3508-3517.
|
[54] |
ZHANG X, INOUE T, KATO K, et al. Performance of hybrid subsurface constructed wetland system for piggery wastewater treatment[J]. Water Science and Technology, 2016, 73(1): 13-20. doi: 10.2166/wst.2015.457
|
[55] |
BORIN M, POLITEO M, DE STEFANI G. Performance of a hybrid constructed wetland treating piggery wastewater[J]. Ecological Engineering, 2013, 51: 229-236. doi: 10.1016/j.ecoleng.2012.12.064
|
[56] |
刘小真, 石湖泉, 陈福根. 人工湿地对规模化养猪废水处理效果评价[J]. 生态环境学报, 2018, 27(11): 2110-2116.
|
[57] |
高红杰, 彭剑峰, 宋永会, 等. 铵饱和天然钙型沸石基质人工湿地对模拟养猪废水的处理效能[J]. 环境保护科学, 2010, 36(6): 14-16. doi: 10.3969/j.issn.1004-6216.2010.06.005
|
[58] |
ZHI W, JI G D. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J]. Water Research, 2014, 64: 32-41. doi: 10.1016/j.watres.2014.06.035
|
[59] |
SUZUKI I, DULAR U, KWOK S C. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas-Europaea cells and extracts[J]. Journal of Bacteriology, 1974, 120(1): 556-558. doi: 10.1128/JB.120.1.556-558.1974
|
[60] |
JETTEN M S M, NIFTRIK L V, STROUS M, et al. Biochemistry and molecular biology of anammox bacteria[J]. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44(2/3): 65-84.
|