-
紫外高级氧化工艺(ultraviolet-based advanced oxidation process, UV-AOPs)作为一种高效的深度处理技术,已被广泛研究用于去除水中的微量有机污染物。UV/H2O2工艺是一种传统的UV-AOPs,在波长254 nm下,氧化剂H2O2光解产生具有强氧化性的羟基自由基(hydroxyl radicals, HO·,氧化还原电位为1.8~2.7 V[1]),其可非选择性地将大分子有机物降解,从而达到高效去除污染物的目的。该工艺具有氧化效率高、有害副产物少等特点,因而得到了大量的研究关注并在实际工程中进行了应用[2]。
目前关于UV/H2O2工艺的研究主要关注污染物的去除效率、机理、水质条件的影响等方面,且大部分是在实验室完全混合序批式反应器中进行的[3-6]。为预测目标污染物在不同水质条件下的降解效率,从而更合理、高效地利用及调控UV-AOPs,研究人员开发了基于自由基浓度稳态假设(steady-state assumption, SSA)的动力学模型[7]。SSA模型的前提假设为反应器内自由基的浓度处于稳态且溶液完全混合,通过整合反应过程中的主要化学反应,可以计算出不同水质条件下反应器内自由基的平均稳态浓度,进而得到对应反应时间下微污染物的降解效率。因此,SSA模型在完全混合的序批式反应器中具有较高准确性[3,8-9]。TU等[10]通过SSA模型准确预测了丙烯氰在序批式UV/H2O2反应器中的降解速率。然而,UV-AOPs在工程应用中基本都采用过流式反应器,其中的水流远未达到完全混合状态。根据目标污染物的降解动力学和光化学反应原理可知,污染物的降解速率与自由基的浓度成正比,而自由基的浓度与紫外辐照强度以及氧化剂的浓度有关。已有研究[11-12]表明,UV光强呈从灯管向外逐渐降低,氧化剂浓度则呈现从进水口到出水口递减的趋势,因此,在溶液未完全混合时,部分自由基可能难以被目标污染物利用,从而影响污染物的降解效率。为了更好地指导UV/H2O2工艺在实际工程中的应用,开展过流式UV/H2O2工艺降解微量有机污染物的研究并评估SSA模型应用于过流式反应器的准确性,具有重要意义。但截至目前,相关研究仍比较缺乏,尤其对于SSA模型的适用性评估,尚未见报道。
基于此,本文选取阿特拉津(atrazine, ATZ)作为模型污染物,采用过流式UV/H2O2反应器对其进行降解,分别考察了H2O2浓度、反应器内径对污染物降解效率及经济性的影响。同时,建立UV/H2O2工艺的SSA模型,并与实验结果进行对比,评估分析SSA模型在过流式反应器中应用的准确性。
过流式UV/H2O2反应器中阿特拉津降解动力学的测定及模拟评估
Measurement and modeling of atrazine degradation kinetics in flow-through UV/H2O2 reactors
-
摘要: 紫外高级氧化工艺在降解去除水中微量有机污染物方面具有良好的应用前景,已有大量相关基础研究在实验室序批式反应器内完成,然而,在实际工程中采用的过流式反应器中的不同水流形态可能会对反应动力学和工艺效率产生影响。为此,采用过流式UV/H2O2反应器降解水中阿特拉津(ATZ),分别考察了H2O2浓度、反应器内径对ATZ降解效率和工艺经济性的影响,同时评估了稳态假设(SSA)模型在过流式UV/H2O2反应器中应用的可行性。结果表明:过流式反应器中UV/H2O2工艺对ATZ有着良好的去除效果,降解过程基本符合拟一级反应动力学(R2>0.95);虽然反应器内流态并非完全混合,SSA模型仍可准确预测反应器中目标污染物的降解,模拟和实验结果相对偏差绝大多数不超过20%;在考察的H2O2浓度范围内,随着浓度的增加,不同反应器中ATZ的降解速率均逐渐增大,特别在H2O2浓度为0.2 mmol·L−1时,内径为35 mm的反应器中ATZ降解速率常数达到5.8×10−2 s−1,是单独UV辐照下的4倍以上。由于平均紫外强度的变化,增大反应器内径将导致ATZ基于时间的降解速率常数的降低,但对基于紫外剂量的速率常数影响不大。此外,EEO分析结果表明,增加H2O2浓度和增大反应器内径均可以降低ATZ去除的单位能耗。Abstract: UV-based advanced oxidation processes are promising in micropollutant removal from water with abundant relative researches accomplished in batch reactors, while the different flow pattern in practical flow-through UV reactors may lead to a varied reaction kinetic and process efficiency. In this study, the kinetics of atrazine (ATZ) degradation in flow-through UV/H2O2 reactors were investigated, and the impacts of H2O2 concentration and internal reactor diameter on ATZ removal efficiency and the process energy efficiency were evaluated. The steady-state assumption (SSA) model was developed to predict the degradation kinetics of atrazine under various experimental conditions, and its accuracy was tested by comparing with experimental data. The results showed that the efficient degradation of ATZ occurred in flow-through UV/H2O2 reactors and it followed the pseudo first-order kinetics (R2>0.95). Despite the fact that the flow was not fully mixed, SSA model exhibited good accuracy in predicting the degradation of target pollutant in flow-through reactors with deviations generally less than 20%. Within the investigated concentration range, ATZ degradation rate in different reactors increased with the rising of H2O2 concentration, and reached 5.8×10−2 s−1 in the reactor with an internal diameter of 35 mm when H2O2 concentration was 0.2 mmol·L−1, which was 4 times as much as that in UV radiation alone. The increasing reactor diameter resulted in a low time-based ATZ degradation rate constant on account of the changes in average fluence rate, while had slight effect on the fluence-based ATZ degradation rate constant. Finally, based on the electrical energy per order (EEO) calculation, the energy efficiency in removing ATZ can be reduced by increasing H2O2 concentration and reactor diameter.
-
表 1 UV/H2O2降解ATZ过程涉及的主要化学反应
Table 1. Chemical reactions involved in atrazine degradation by UV/H2O2 process
反应式 参数 ${\rm{ATZ} } + hv \to {\simfont\text{产物} }$ Ф1=0.048,ɛ1=3 397 L·(mol·cm)−1 ${\rm{H} }_{\rm{2} }{\rm{O} }_{\rm{2} } + hv \to {\rm{2HO} }{\cdot}$ Ф2=0.5,ɛ2=18.7 L·(mol·cm)−1 ${\rm{ATZ + HO} }{\cdot}\to {\simfont\text{产物} }$ ${k_{\rm{1}}}{\rm{=2}}{\rm{.3 }} \times {\rm{ 1}}{{\rm{0}}^{\rm{9}}}$ L·(mol·s)−1${\rm{H} }_{\rm{2} }{\rm{O} }_{\rm{2} }{\rm{ + HO} }{\cdot}\to {\rm{HO} }{_{\rm{2} }^{ \cdot -} }{\rm{ + H} }_{\rm{2} }{\rm{O} }$ ${k_{\rm{2}}}{\rm{=2}}{\rm{.7 }} \times {\rm{ 1}}{{\rm{0}}^{\rm{7}}}$ L·(mol·s)−1表 2 不同反应条件下实验和模拟得到的ATZ拟一级降解速率常数
Table 2. Observed and calculated pseudo-first order rate constants of atrazine degradation under various conditions
反应器 H2O2/(mmol·L−1) kobs/s−1 $ k_{{\rm{obs}}}^{'} $ /(cm2·mJ−1)相对偏差/% 实验值 模拟值 实验值 模拟值 D35 0 1.3×10−2 1.0×10−2 9.9×10−4 7.9×10−4 −19.8 0.05 2.8×10−2 3.1×10−2 2.1×10−3 2.4×10−3 12.9 0.1 3.1×10−2 4.5×10−2 2.4×10−3 3.5×10−3 44.0 0.2 5.8×10−2 6.2×10−2 4.5×10−3 4.8×10−3 7.0 D50 0 1.0×10−2 8.9×10−3 8.9×10−4 7.9×10−4 −11.8 0.05 2.9×10−2 2.7×10−2 2.6×10−3 2.4×10−3 −5.7 0.1 3.6×10−2 3.9×10−2 3.2×10−3 3.5×10−3 9.4 0.2 5.6×10−2 5.4×10−2 5.0×10−3 4.7×10−3 −5.2 D80 0 6.9×10−3 5.8×10−3 9.4×10−4 7.8×10−4 −16.6 0.05 1.7×10−2 1.8×10−2 2.3×10−3 2.4×10−3 1.8 0.1 2.7×10−2 2.5×10−2 3.7×10−3 3.4×10−3 −6.4 0.2 3.2×10−2 3.5×10−2 4.3×10−3 4.7×10−3 7.8 -
[1] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals[J]. Journal of Physical and Chemical Reference Data, 1998, 17(2): 513-886. [2] MIKLOS D B, HARTL R, MICHEL P, et al. UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents[J]. Water Research, 2018, 136: 169-179. doi: 10.1016/j.watres.2018.02.044 [3] GUO K, WU Z, YAN S, et al. Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements[J]. Water Research, 2018, 147: 184-194. doi: 10.1016/j.watres.2018.08.048 [4] LIU X, LIU Y, LU S, et al. Degradation difference of ofloxacin and levofloxacin by UV/H2O2 and UV/PS (persulfate): Efficiency, factors and mechanism[J]. Chemical Engineering Journal, 2020, 385: 123987. doi: 10.1016/j.cej.2019.123987 [5] HE H, JI Q, GAO Z, et al. Degradation of tri(2-chloroisopropyl) phosphate by the UV/H2O2 system: Kinetics, mechanisms and toxicity evaluation[J]. Chemosphere, 2019, 236: 124388. doi: 10.1016/j.chemosphere.2019.124388 [6] ALFANO O M, BRANDI R J, CASSANO A E. Degradation kinetics of 2, 4-D in water employing hydrogen peroxide and UV radiation[J]. Chemical Engineering Journal, 2001, 82(1): 209-218. [7] GLAZE W H, LAY Y, KANG J W. Advanced oxidation processes: A kinetic model for the oxidation of 1, 2-dibromo-3-chloropropane in water by the combination of hydrogen peroxide and UV radiation[J]. Industrial & Engineering Chemistry Research, 1995, 34(7): 2314-2323. [8] YIN K, DENG L, LUO J, et al. Destruction of phenicol antibiotics using the UV/H2O2 process: Kinetics, byproducts, toxicity evaluation and trichloromethane formation potential[J]. Chemical Engineering Journal, 2018, 351: 867-877. doi: 10.1016/j.cej.2018.06.164 [9] YAO H, SUN P, MINAKATA D, et al. Kinetics and modeling of degradation of ionophore antibiotics by UV and UV/H2O2[J]. Environmental Science & Technology, 2013, 47(9): 4581-4589. [10] TU X, MENG X, PAN Y, et al. Degradation kinetics of target compounds and correlations with spectral indices during UV/H2O2 post-treatment of biologically treated acrylonitrile wastewater[J]. Chemosphere, 2020, 243: 125384. doi: 10.1016/j.chemosphere.2019.125384 [11] WOLS B A, HOFMAN-CARIS C H M. Modelling micropollutant degradation in UV/H2O2 systems: Lagrangian versus Eulerian method[J]. Chemical Engineering Journal, 2012, 210: 289-297. doi: 10.1016/j.cej.2012.08.088 [12] SANTORO D, RAISEE M, MOGHADDAMI M, et al. Modeling hydroxyl radical distribution and trialkyl phosphates oxidation in UV/H2O2 photoreactors using computational fluid dynamics[J]. Environmental Science & Technology, 2010, 44(16): 6233-6241. [13] ZHOU S, ZHANG W, SUN J, et al. Oxidation mechanisms of the UV/free chlorine process: Kinetic modeling and quantitative structure activity relationships[J]. Environmental Science & Technology, 2019, 53(8): 4335-4345. [14] VISENTIN F, BHARTIA S, MOHSENI M, et al. Performance of vacuum UV (VUV) for the degradation of MC-LR, geosmin, and MIB from cyanobacteria-impacted waters[J]. Environmental Science: Water Research & Technology, 2019, 5(11): 2048-2058. [15] BAGHERI M, MOHSENI M. Computational fluid dynamics (CFD) modeling of VUV/UV photoreactors for water treatment[J]. Chemical Engineering Journal, 2014, 256: 51-60. doi: 10.1016/j.cej.2014.06.068 [16] BAGHERI M, IMOBERDORF G, MOHSENI M. Micropollutants removal from surface water using a pilot vacuum-UV advanced oxidation process[J]. Journal of Environmental Engineering, 2017, 143(10): 04017066. doi: 10.1061/(ASCE)EE.1943-7870.0001269 [17] LUO C, MA J, JIANG J, et al. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, $ {\rm{UV/HSO}}_{\rm{5}}^{\rm{ - }}$ and$ {\rm{UV/}}{{\rm{S}}_{\rm{2}}}{\rm{O}}_{\rm{8}}^{{\rm{2 - }}}$ [J]. Water Research, 2015, 80: 99-108. doi: 10.1016/j.watres.2015.05.019[18] LI M, LI W, BOLTON J R, et al. Organic pollutant degradation in water by the vacuum-ultraviolet/ultraviolet/H2O2 process: Inhibition and enhancement roles of H2O2[J]. Environmental Science & Technology, 2019, 53(2): 912-918. [19] LIN C, LIN H, HSU L. Degradation of ofloxacin using UV/H2O2 process in a large photoreactor[J]. Separation and Purification Technology, 2016, 168: 57-61. doi: 10.1016/j.seppur.2016.04.052 [20] 许芬, 张如锋, 沈芷璇, 等. UV/H2O2降解美罗培南的影响因素及毒性研究[J]. 环境科学学报, 2019, 39(12): 4031-4038. [21] PAN J, CHEN Y Q. Oxidative degradation of bisphenol A (BPA) by UV/H2O2 process[C]// 2010 4th International Conference on Bioinformatics and Biomedical Engineering. Chengdu, China: iCBBE, 2010: 1-4. [22] ZOSCHKE K, BÖRNICK H, WORCH E. Vacuum-UV radiation at 185 nm in water treatment: A review[J]. Water Research, 2014, 52: 131-145. doi: 10.1016/j.watres.2013.12.034