[1] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals[J]. Journal of Physical and Chemical Reference Data, 1998, 17(2): 513-886.
[2] MIKLOS D B, HARTL R, MICHEL P, et al. UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents[J]. Water Research, 2018, 136: 169-179. doi: 10.1016/j.watres.2018.02.044
[3] GUO K, WU Z, YAN S, et al. Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements[J]. Water Research, 2018, 147: 184-194. doi: 10.1016/j.watres.2018.08.048
[4] LIU X, LIU Y, LU S, et al. Degradation difference of ofloxacin and levofloxacin by UV/H2O2 and UV/PS (persulfate): Efficiency, factors and mechanism[J]. Chemical Engineering Journal, 2020, 385: 123987. doi: 10.1016/j.cej.2019.123987
[5] HE H, JI Q, GAO Z, et al. Degradation of tri(2-chloroisopropyl) phosphate by the UV/H2O2 system: Kinetics, mechanisms and toxicity evaluation[J]. Chemosphere, 2019, 236: 124388. doi: 10.1016/j.chemosphere.2019.124388
[6] ALFANO O M, BRANDI R J, CASSANO A E. Degradation kinetics of 2, 4-D in water employing hydrogen peroxide and UV radiation[J]. Chemical Engineering Journal, 2001, 82(1): 209-218.
[7] GLAZE W H, LAY Y, KANG J W. Advanced oxidation processes: A kinetic model for the oxidation of 1, 2-dibromo-3-chloropropane in water by the combination of hydrogen peroxide and UV radiation[J]. Industrial & Engineering Chemistry Research, 1995, 34(7): 2314-2323.
[8] YIN K, DENG L, LUO J, et al. Destruction of phenicol antibiotics using the UV/H2O2 process: Kinetics, byproducts, toxicity evaluation and trichloromethane formation potential[J]. Chemical Engineering Journal, 2018, 351: 867-877. doi: 10.1016/j.cej.2018.06.164
[9] YAO H, SUN P, MINAKATA D, et al. Kinetics and modeling of degradation of ionophore antibiotics by UV and UV/H2O2[J]. Environmental Science & Technology, 2013, 47(9): 4581-4589.
[10] TU X, MENG X, PAN Y, et al. Degradation kinetics of target compounds and correlations with spectral indices during UV/H2O2 post-treatment of biologically treated acrylonitrile wastewater[J]. Chemosphere, 2020, 243: 125384. doi: 10.1016/j.chemosphere.2019.125384
[11] WOLS B A, HOFMAN-CARIS C H M. Modelling micropollutant degradation in UV/H2O2 systems: Lagrangian versus Eulerian method[J]. Chemical Engineering Journal, 2012, 210: 289-297. doi: 10.1016/j.cej.2012.08.088
[12] SANTORO D, RAISEE M, MOGHADDAMI M, et al. Modeling hydroxyl radical distribution and trialkyl phosphates oxidation in UV/H2O2 photoreactors using computational fluid dynamics[J]. Environmental Science & Technology, 2010, 44(16): 6233-6241.
[13] ZHOU S, ZHANG W, SUN J, et al. Oxidation mechanisms of the UV/free chlorine process: Kinetic modeling and quantitative structure activity relationships[J]. Environmental Science & Technology, 2019, 53(8): 4335-4345.
[14] VISENTIN F, BHARTIA S, MOHSENI M, et al. Performance of vacuum UV (VUV) for the degradation of MC-LR, geosmin, and MIB from cyanobacteria-impacted waters[J]. Environmental Science: Water Research & Technology, 2019, 5(11): 2048-2058.
[15] BAGHERI M, MOHSENI M. Computational fluid dynamics (CFD) modeling of VUV/UV photoreactors for water treatment[J]. Chemical Engineering Journal, 2014, 256: 51-60. doi: 10.1016/j.cej.2014.06.068
[16] BAGHERI M, IMOBERDORF G, MOHSENI M. Micropollutants removal from surface water using a pilot vacuum-UV advanced oxidation process[J]. Journal of Environmental Engineering, 2017, 143(10): 04017066. doi: 10.1061/(ASCE)EE.1943-7870.0001269
[17] LUO C, MA J, JIANG J, et al. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, $ {\rm{UV/HSO}}_{\rm{5}}^{\rm{ - }}$ and $ {\rm{UV/}}{{\rm{S}}_{\rm{2}}}{\rm{O}}_{\rm{8}}^{{\rm{2 - }}}$[J]. Water Research, 2015, 80: 99-108. doi: 10.1016/j.watres.2015.05.019
[18] LI M, LI W, BOLTON J R, et al. Organic pollutant degradation in water by the vacuum-ultraviolet/ultraviolet/H2O2 process: Inhibition and enhancement roles of H2O2[J]. Environmental Science & Technology, 2019, 53(2): 912-918.
[19] LIN C, LIN H, HSU L. Degradation of ofloxacin using UV/H2O2 process in a large photoreactor[J]. Separation and Purification Technology, 2016, 168: 57-61. doi: 10.1016/j.seppur.2016.04.052
[20] 许芬, 张如锋, 沈芷璇, 等. UV/H2O2降解美罗培南的影响因素及毒性研究[J]. 环境科学学报, 2019, 39(12): 4031-4038.
[21] PAN J, CHEN Y Q. Oxidative degradation of bisphenol A (BPA) by UV/H2O2 process[C]// 2010 4th International Conference on Bioinformatics and Biomedical Engineering. Chengdu, China: iCBBE, 2010: 1-4.
[22] ZOSCHKE K, BÖRNICK H, WORCH E. Vacuum-UV radiation at 185 nm in water treatment: A review[J]. Water Research, 2014, 52: 131-145. doi: 10.1016/j.watres.2013.12.034