环境相关浓度五氯苯酚全生命周期暴露对大型溞的毒性效应研究
Whole-Life-Stage Toxic Effects of Pentachlorophenol in Daphnia magna at Environmentally Relevant Concentrations
-
摘要: 水环境是众多化学污染物的归宿地,因此水生生物,尤其是生命周期短的浮游动物,可能在整个生命阶段均处于污染物的暴露中并受到相应的环境危害。五氯苯酚(pentachlorophenol,PCP)是一种典型的持久性有机污染物,其在自然水体中的浓度从几ng·L-1至几十μg·L-1不等。已有的毒理学研究探究了PCP对水生生物部分生命阶段的慢性毒性效应,而对其全生命周期的环境危害鲜有报道。因此,本研究以浮游模式动物——大型溞(Daphnia magna)为受试生物,探究了环境相关浓度PCP全生命周期暴露对其存活、生长、生殖、心率、游泳行为和基因表达的影响。环境相关浓度(1.74±0.05)、(16.84±1.13)和(166.11±9.47)μg·L-1 PCP暴露显著抑制了大型溞的游泳行为、心率、个体生长和生殖,引起了大型溞群体的过早死亡。基因转录结果显示PCP暴露显著上调了大型溞生命晚期与心脏疾病和神经递质相关途径的基因表达,表明大型溞在生命晚期阶段存活率的下降可能与心脏功能障碍和神经活动抑制有关。此外,本研究发现随着暴露时间的延长,大型溞各毒性指标的最低观察有效应浓度(lowest observed effect concentration,LOEC)呈下降趋势,表明污染物全生命周期暴露对大型溞具有更大的环境危害。综上所述,本研究结果表明化学品部分生命周期的暴露实验可能低估了环境污染物的环境危害,因此将来开展浮游动物的全生命周期暴露实验评估化学品的环境危害是有必要的。Abstract: The water environment is the destination of many chemical pollutants, so aquatic organisms, especially zooplanktons with short life span, may be exposed to pollutants and suffer related environmental hazards in the whole life stage. Pentachlorophenol (PCP) is a typical persistent organic pollutant. The concentrations of PCP in natural water ranged from a few ng·L-1 to dozens of μg·L-1. Previous toxicological studies have evaluated the chronic toxic effects of PCP in partial life stage of aquatic organisms, but the environmental hazards to its whole life stage have been rarely reported. Therefore, in this study, the zooplankton model animal, Daphnia magna (D. magna), was used to evaluate the effects of PCP exposure at environmentally relevant concentrations on its survival, growth, reproduction, heart rate, swimming behavior and gene expression. Exposure of PCP at environmentally relevant concentrations (1.74 ±0.05), (16.84±1.13) and (166.11±9.47) μg·L-1 significantly inhibited swimming behavior, heart rate, individual growth and reproduction of D. magna, resulting in premature death of D. magna. The results of gene transcription showed that PCP exposure significantly up-regulated the expression of genes included in pathways related to heart disease and neurotransmitters during the stage of death, indicating that the decrease of survival rate of D. magna during the stage of death might be related to cardiac dysfunction and inhibition of neural activity. In addition, this study found that with the extension of exposure time, the lowest observed effect concentration (LOEC) of each toxicity index tested of D. magna decreased, indicating that the whole-life-stage exposure of pollutants might have greater environmental hazards to D. magna. To sum up, these results show that partial-life-stage exposure experiments of chemicals might underestimate environmental hazards of environmental pollutants. Therefore, it might be necessary to carry out the whole-life-stage exposure experiments of zooplanktons to assess environmental hazards of chemicals in the future.
-
-
Zheng W W, Wang X, Yu H, et al. Global trends and diversity in pentachlorophenol levels in the environment and in humans:A meta-analysis[J]. Environmental Science & Technology, 2011, 45(11):4668-4675 Zheng W W, Yu H, Wang X, et al. Systematic review of pentachlorophenol occurrence in the environment and in humans in China:Not a negligible health risk due to the re-emergence of schistosomiasis[J]. Environment International, 2012, 42:105-116 Zha J M, Wang Z J, Schlenk D. Effects of pentachlorophenol on the reproduction of Japanese medaka (Oryzias latipes)[J]. Chemico-Biological Interactions, 2006, 161(1):26-36 Li H X, Drouillard K G, Bennett E, et al. Plasma-associated halogenated phenolic contaminants in benthic and pelagic fish species from the Detroit River[J]. Environmental Science & Technology, 2003, 37(5):832-839 Cheng Y, Ekker M, Chan H M. Relative developmental toxicities of pentachloroanisole and pentachlorophenol in a zebrafish model (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2015, 112:7-14 Muir J, Eduljee G. PCP in the freshwater and marine environment of the European Union[J]. The Science of the Total Environment, 1999, 236(1-3):41-56 Gifford J S, Buckland S J, Judd M C, et al. Pentachlorophenol (PCP), PCDD, PCDF and pesticide concentrations in a freshwater lake catchment[J]. Chemosphere, 1996, 32(11):2097-2113 Anderson B G, Jenkins J C. A time study of events in the life span of Daphnia magna[J]. The Biological Bulletin, 1942, 83(2):260-272 Adema D M M. Daphnia magna as a test animal in acute and chronic toxicity tests[J]. Hydrobiologia, 1978, 59(2):125-134 Schechter V. Effect of heparin and of vitamin K on the life span of Daphnia magna[J]. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine, 1950, 74(4):747-748 Crosby D G, Tucker R K, Aharonson N. The detection of acute toxicity with Daphnia magna[J]. Food and Cosmetics Toxicology, 1966, 4:503-514 Postmes T J, Nacken G, Nelissen R G. An electronic method for measuring the heart frequency of the waterflea:Daphnia pulex[J]. Experientia, 1974, 30(12):1478-1480 Stollewerk A. The water flea Daphnia-A ‘new’ model system for ecology and evolution?[J]. Journal of Biology, 2010, 9(2):21 Chen Y, Huang J, Xing L Q, et al. Effects of multigenerational exposures of D. magna to environmentally relevant concentrations of pentachlorophenol[J].Environmental Science and Pollution Research, 2014, 21(1):234-243 Li H, Su G Y, Zou M, et al. Effects of tris(1,3-dichloro-2-propyl) phosphate on growth, reproduction, and gene transcription of Daphnia magna at environmentally relevant concentrations[J]. Environmental Science & Technology, 2015, 49(21):12975-12983 Li H, Yuan S L, Su G Y, et al. Whole-life-stage characterization in the basic biology of Daphnia magna and effects of TDCIPP on growth, reproduction, survival, and transcription of genes[J]. Environmental Science & Technology, 2017, 51(23):13967-13975 Jiang H P, Zhang Y H, Chen X G, et al. Simultaneous determination of pentachlorophenol, niclosamide and fenpropathrin in fishpond water using an LC-MS/MS method for forensic investigation[J]. Analytical Methods, 2013, 5(1):111-115 Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408 Sánchez P, Alonso C, Fernández C, et al. Evaluation of a multi-species test system for assessing acute and chronic toxicity of sediments and water to aquatic invertebrates:Effects of pentachlorophenol on Daphnia magna and Chironomus prasinus (6 pp)[J].Journal of Soils and Sediments, 2005, 5(1):53-58 Chen Y, Huang J, Xing L Q, et al. Effects of multigenerational exposures of D. magna to environmentally relevant concentrations of pentachlorophenol[J]. Environmental Science and Pollution Research International, 2014, 21(1):234-243 Martin-Creuzburg D, Westerlund S A, Hoffmann K H. Ecdysteroid levels in Daphnia magna during a molt cycle:Determination by radioimmunoassay (RIA) and liquid chromatography-mass spectrometry (LC-MS)[J]. General and Comparative Endocrinology, 2007, 151(1):66-71 张倩倩, 乔敏. 五氯酚对土壤跳虫代谢转化酶基因和蜕皮相关基因表达的影响[J]. 生态毒理学报, 2017, 12(5):72-78 Zhang Q Q, Qiao M. Effects of pentachlorophenol on expression of metabolic enzyme genes and molt-related genes of soil collembolan[J]. Asian Journal of Ecotoxicology, 2017, 12(5):72-78(in Chinese)
Levitan D R. Density-dependent size regulation and negative growth in the sea urchin Diadema antillarum Philippi[J]. Oecologia, 1988, 76(4):627-629 Muyssen B T A, Messiaen M, Janssen C R. Combined cadmium and temperature acclimation in Daphnia magna:Physiological and sub-cellular effects[J]. Ecotoxicology and Environmental Safety, 2010, 73(5):735-742 Knops M, Altenburger R, Segner H. Alterations of physiological energetics, growth and reproduction of Daphnia magna under toxicant stress[J]. Aquatic Toxicology, 2001, 53(2):79-90 Ream R A, Theriot J A, Somero G N. Influences of thermal acclimation and acute temperature change on the motility of epithelial wound-healing cells (keratocytes) of tropical, temperate and Antarctic fish[J]. The Journal of Experimental Biology, 2003, 206(Pt 24):4539-4551 Bekker J M, Krijgsman B J. Physiological investigations into the heart function of Daphnia[J]. The Journal of Physiology, 1951, 115(3):249-257 Pirtle T J, Carr T L, Khurana T, et al. ZD7288 and mibefradil inhibit the myogenic heartbeat in Daphnia magna indicating its dependency on HCN and T-type calcium ion channels[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2018, 222:36-42 Villegas-Navarro A, Rosas-L E, Reyes J L. The heart of Daphnia magna:Effects of four cardioactive drugs[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2003, 136(2):127-134 Podosinovikova N P, Ezhov N F, Saǐkina N A, et al. Heart rate in Daphnia magna as a functional test for assessing efficacy of chemical agents[J]. Eksperimental'Naia i Klinicheskaia Farmakologiia, 2008, 71(3):54-56 Clemedson C, Ekwall B. Overview of the final MEIC results:Ⅰ. the In vitro-In vitro evaluation[J]. Toxicology in Vitro, 1999, 13(4-5):657-663 Bownik A, Stępniewska Z. Ectoine alleviates behavioural, physiological and biochemical changes in Daphnia magna subjected to formaldehyde[J]. Environmental Science and Pollution Research, 2015, 22(20):15549-15562 Corotto F, Ceballos D, Lee A, et al. Making the most of the Daphnia heart rate lab:Optimizing the use of ethanol, nicotine & caffeine[J]. The American Biology Teacher, 2010, 72(3):176-179 Yuan L, Michels E, De Meester L. Changes in phototactic behavior of Daphnia magna clone C1242 in response to copper, cadmium and pentachlorophenol[J]. Journal of Environmental Sciences (China), 2003, 15(6):841-847 Preston B L, Snell T W, Dusenbery D B. The effects of sublethal pentachlorophenol exposure on predation risk in freshwater rotifer species[J]. Aquatic Toxicology, 1999, 47(2):93-105 Yu G, Kong D, Li B. Study on swimming behavior change of Daphnia pulex under stress of four toxic substances[J]. Environmental Science & Technology, 2019, 42(1):112-118 Baillieul M, Blust R. Analysis of the swimming velocity of cadmium-stressed Daphnia magna[J]. Aquatic Toxicology, 1999, 44(4):245-254 Lovern S B, Strickler J R, Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx)[J]. Environmental Science & Technology, 2007, 41(12):4465-4470 Towbin J A, Lorts A. Arrhythmias and dilated cardiomyopathy common pathogenetic pathways?[J]. Journal of the American College of Cardiology, 2011, 57(21):2169-2171 Araco M, Merlo M, Carr-White G, et al. Genetic bases of dilated cardiomyopathy[J]. Journal of Cardiovascular Medicine, 2017, 18(3):123-130 Davili Z, Johar S, Hughes C, et al. Succinate dehydrogenase deficiency associated with dilated cardiomyopathy and ventricular noncompaction[J]. European Journal of Pediatrics, 2007, 166(8):867-870 Lopes C, Charles S, Vollat B, et al. Toxicity of ivermectin on cladocerans:Comparison of toxic effects on Daphnia and Ceriodaphnia species[J]. Environmental Toxicology and Chemistry, 2009, 28(10):2160-2166 Novelli A, Vieira B H, Cordeiro D, et al. Lethal effects of abamectin on the aquatic organisms Daphnia similis, Chironomus xanthus and Danio rerio[J]. Chemosphere, 2012, 86(1):36-40 Rivetti C, Campos B, Piña B, et al. Tryptophan hydroxylase (TRH) loss of function mutations induce growth and behavioral defects in Daphnia magna[J]. Scientific Reports, 2018, 8:1518 Bellot M, Faria M, Gómez-Canela C, et al. Pharmacological modulation of behaviour, serotonin and dopamine levels in Daphnia magna exposed to the monoamine oxidase inhibitor deprenyl[J]. Toxics, 2021, 9(8):187 -

计量
- 文章访问数: 2401
- HTML全文浏览数: 2401
- PDF下载数: 98
- 施引文献: 0