环境浓度氧化石墨烯和多环芳烃复合暴露诱发成年斑马鱼脑组织的分子响应研究

孙晶, 刘玉玮, 胡献刚, 欧阳少虎. 环境浓度氧化石墨烯和多环芳烃复合暴露诱发成年斑马鱼脑组织的分子响应研究[J]. 生态毒理学报, 2022, 17(3): 256-267. doi: 10.7524/AJE.1673-5897.20211026002
引用本文: 孙晶, 刘玉玮, 胡献刚, 欧阳少虎. 环境浓度氧化石墨烯和多环芳烃复合暴露诱发成年斑马鱼脑组织的分子响应研究[J]. 生态毒理学报, 2022, 17(3): 256-267. doi: 10.7524/AJE.1673-5897.20211026002
Sun Jing, Liu Yuwei, Hu Xiangang, Ouyang Shaohu. Molecular Response in Adult Zebrafish Brain Induced by Environment-related Concentration Graphene Oxide and Polycyclic Aromatic Hydrocarbons[J]. Asian journal of ecotoxicology, 2022, 17(3): 256-267. doi: 10.7524/AJE.1673-5897.20211026002
Citation: Sun Jing, Liu Yuwei, Hu Xiangang, Ouyang Shaohu. Molecular Response in Adult Zebrafish Brain Induced by Environment-related Concentration Graphene Oxide and Polycyclic Aromatic Hydrocarbons[J]. Asian journal of ecotoxicology, 2022, 17(3): 256-267. doi: 10.7524/AJE.1673-5897.20211026002

环境浓度氧化石墨烯和多环芳烃复合暴露诱发成年斑马鱼脑组织的分子响应研究

    作者简介: 孙晶(1990—),女,博士,研究方向为环境监测与生态毒理学,E-mail:sunjing90s@yeah.net
    通讯作者: 欧阳少虎, E-mail: ouyangshaohu@nankai.edu.cn
  • 基金项目:

    国家重点研发计划资助项目(2019YFC1804104);博士后面上项目(2020M680867);NSFC山东联合基金资助项目(U1906222);高等学校学科创新引智计划资助项目(T2017002)

  • 中图分类号: X171.5

Molecular Response in Adult Zebrafish Brain Induced by Environment-related Concentration Graphene Oxide and Polycyclic Aromatic Hydrocarbons

    Corresponding author: Ouyang Shaohu, ouyangshaohu@nankai.edu.cn
  • Fund Project:
  • 摘要: 氧化石墨烯(graphene oxide,GO)是目前十分重要的人工纳米材料,且极有可能被排放到环境中。因而GO与环境中的共存污染物多环芳烃(polycyclic aromatic hydrocarbons,PAHs)对水生生物的复合暴露毒性及其相关机理值得进一步研究。使用成年斑马鱼为动物模型,选取水环境浓度的典型污染物16种优控PAHs与环境预测浓度的GO对成年斑马鱼进行21 d亚急性暴露,研究GO和PAHs复合暴露对成年斑马鱼脑组织的毒性效应及其分子机理。结果表明,GO暴露组和PAHs-GO复合暴露组在21 d的亚急性暴露中均不会诱发成年斑马鱼的死亡和畸形,但会降低斑马鱼脑组织细胞色素P4501B1酶(CYP1B1)和β-半乳糖苷酶(β-Gal)的含量;在分子水平上,0.1 mg·L-1 GO组(GO组)、5 μg·L-1 PAHs组(PAHs组)和0.1 mg·L-1 GO&5 μg·L-1 PAHs组(PAHs-GO组)诱发的差异基因数量和差异基因通路数量排序为PAHs组>GO-PAHs组>GO组。研究表明:(1)在环境预测浓度的GO与环境浓度PAHs对成年斑马鱼复合暴露时,对斑马鱼脑组织酶的影响GO占据主导地位;(2) PAHs-GO复合暴露组兼具GO和PAHs的分子毒性效应的特点,说明GO和PAHs在环境相关浓度下的复合暴露分子毒性值得注意;(3) GO组转录组氧化酶相关基因变化与酶含量结果相一致,暗示可以使用转录组来解释生物酶含量变化的分子机理。本文结果可为纳米材料与环境污染物的复合毒性效应和机理研究提供参考。
  • 加载中
  • Goodwin D G Jr, Adeleye A S, Sung L, et al. Detection and quantification of graphene-family nanomaterials in the environment[J]. Environmental Science & Technology, 2018, 52(8):4491-4513
    Hu X G, Zhou Q X. Health and ecosystem risks of graphene[J]. Chemical Reviews, 2013, 113(5):3815-3835
    Liu Y, Nie Y G, Wang J J, et al. Mechanisms involved in the impact of engineered nanomaterials on the joint toxicity with environmental pollutants[J]. Ecotoxicology and Environmental Safety, 2018, 162:92-102
    Wang Y, Comer J, Chen Z F, et al. Exploring adsorption of neutral aromatic pollutants onto graphene nanomaterials via molecular dynamics simulations and theoretical linear solvation energy relationships[J]. Environmental Science:Nano, 2018, 5(9):2117-2128
    Sun Y B, Yang S B, Zhao G X, et al. Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides[J]. Chemistry, An Asian Journal, 2013, 8(11):2755-2761
    Zhou Q X, Hu X G. Systemic stress and recovery patterns of rice roots in response to graphene oxide nanosheets[J]. Environmental Science & Technology, 2017, 51(4):2022-2030
    Bragin G E, Parkerton T F, Redman A D, et al. Chronic toxicity of selected polycyclic aromatic hydrocarbons to algae and crustaceans using passive dosing[J]. Environmental Toxicology and Chemistry, 2016, 35(12):2948-2957
    Bezza F A, Chirwa E M N. The role of lipopeptide biosurfactant on microbial remediation of aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil[J]. Chemical Engineering Journal, 2017, 309:563-576
    范博, 王晓南, 黄云, 等. 我国七大流域水体多环芳烃的分布特征及风险评价[J]. 环境科学, 2019, 40(5):2101-2114

    Fan B, Wang X N, Huang Y, et al. Distribution and risk assessment of polycyclic aromatic hydrocarbons in water bodies in seven basins of China[J]. Environmental Science, 2019, 40(5):2101-2114(in Chinese)

    Tang Y M, Junaid M, Niu A P, et al. Diverse toxicological risks of PAHs in surface water with an impounding level of 175m in the Three Gorges Reservoir Area, China[J]. The Science of the Total Environment, 2017, 580:1085-1096
    Yan J X, Liu J L, Shi X, et al. Polycyclic aromatic hydrocarbons (PAHs) in water from three estuaries of China:Distribution, seasonal variations and ecological risk assessment[J]. Marine Pollution Bulletin, 2016, 109(1):471-479
    Zhou Q X, Cheng Y, Zhang Q R, et al. Quantitative analyses of relationships between ecotoxicological effects and combined pollution[J]. Science in China Series C, Life Sciences, 2004, 47(4):332-339
    Linard E N, Apul O G, Karanfil T, et al. Bioavailability of carbon nanomaterial-adsorbed polycyclic aromatic hydrocarbons to Pimphales promelas:Influence of adsorbate molecular size and configuration[J]. Environmental Science & Technology, 2017, 51(16):9288-9296
    Zindler F, Glomstad B, Altin D, et al. Phenanthrene bioavailability and toxicity to Daphnia magna in the presence of carbon nanotubes with different physicochemical properties[J]. Environmental Science & Technology, 2016, 50(22):12446-12454
    Wang Z, Zhang F, Wang S, et al. Assessment and prediction of joint algal toxicity of binary mixtures of graphene and ionic liquids[J]. Chemosphere, 2017, 185:681-689
    Garcia G R, Noyes P D, Tanguay R L. Advancements in zebrafish applications for 21st Century toxicology[J]. Pharmacology & Therapeutics, 2016, 161:11-21
    Audira G, Lee J S, Siregar P, et al. Comparison of the chronic toxicities of graphene and graphene oxide toward adult zebrafish by using biochemical and phenomic approaches[J]. Environmental Pollution, 2021, 278:116907
    Alexandre-Moreno S, Bonet-Fernández J M, Atienzar-Aroca R, et al. Null cyp1b1 activity in zebrafish leads to variable craniofacial defects associated with altered expression of extracellular matrix and lipid metabolism genes[J]. International Journal of Molecular Sciences, 2021, 22(12):6430
    Mu L, Gao Y, Hu X G. Characterization of biological secretions binding to graphene oxide in water and the specific toxicological mechanisms[J]. Environmental Science & Technology, 2016, 50(16):8530-8537
    Zhang X L, Zhou Q X, Zou W, et al. Molecular mechanisms of developmental toxicity induced by graphene oxide at predicted environmental concentrations[J]. Environmental Science & Technology, 2017, 51(14):7861-7871
    孙晶, 欧阳少虎, 胡献刚, 等. 3种碳纳米材料对斑马鱼生长发育、氧化应激及代谢的影响[J]. 生态毒理学报, 2020, 15(6):101-114

    Sun J, Ouyang S H, Hu X G, et al. Effects of three carbonaceous nanomaterials on the developmental toxicity, oxidative stress, and metabolic profile in zebrafish[J]. Asian Journal of Ecotoxicology, 2020, 15(6):101-114(in Chinese)

    Li X K, Mu L, Hu X G. Integrating proteomics, metabolomics and typical analysis to investigate the uptake and oxidative stress of graphene oxide and polycyclic aromatic hydrocarbons[J]. Environmental Science:Nano, 2018, 5(1):115-129
    Nouara A, Wu Q L, Li Y X, et al. Carboxylic acid functionalization prevents the translocation of multi-walled carbon nanotubes at predicted environmentally relevant concentrations into targeted organs of nematode Caenorhabditis elegans[J]. Nanoscale, 2013, 5(13):6088-6096
    Zou W, Zhou Q X, Zhang X L, et al. Characterization of the effects of trace concentrations of graphene oxide on zebrafish larvae through proteomic and standard methods[J]. Ecotoxicology and Environmental Safety, 2018, 159:221-231
    Sun J, Zhou Q X, Hu X G. Integrating multi-omics and regular analyses identifies the molecular responses of zebrafish brains to graphene oxide:Perspectives in environmental criteria[J]. Ecotoxicology and Environmental Safety, 2019, 180:269-279
    Cooper R J, Menking-Colby M N, Humphrey K A, et al. Involvement of β-catenin in cytoskeleton disruption following adult neural stem cell exposure to low-level silver nanoparticles[J]. Neurotoxicology, 2019, 71:102-112
    Fayeulle A, Veignie E, Slomianny C, et al. Energy-dependent uptake of benzo[a] pyrene and its cytoskeleton-dependent intracellular transport by the telluric fungus Fusarium solani[J]. Environmental Science and Pollution Research International, 2014, 21(5):3515-3523
    Sforzini S, Oliveri C, Orrù A, et al. Application of a new targeted low density microarray and conventional biomarkers to evaluate the health status of marine mussels:A field study in Sardinian coast, Italy[J]. The Science of the Total Environment, 2018, 628-629:319-328
    Ferreira J L R, Lonné M N, França T A, et al. Co-exposure of the organic nanomaterial fullerene C60 with benzo[a] pyrene in Danio rerio (zebrafish) hepatocytes:Evidence of toxicological interactions[J]. Aquatic Toxicology, 2014, 147:76-83
    Baun A, Sørensen S N, Rasmussen R F, et al. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C(60)[J]. Aquatic Toxicology, 2008, 86(3):379-387
    Geiger B, Nguyen H M, Wenig S, et al. From by-product to valuable components:Efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus[J]. Biochemical Engineering Journal, 2016, 116:45-53
    Geng Y Q, Guan J T, Xu X H, et al. Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons[J]. Biochemical and Biophysical Research Communications, 2010, 396(4):866-869
    Kim E J, Podder A, Maiti M, et al. Selective monitoring of vascular cell senescence via β-galactosidase detection with a fluorescent chemosensor[J]. Sensors and Actuators B:Chemical, 2018, 274:194-200
    Geier M C, Chlebowski A C, Truong L, et al. Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons[J]. Archives of Toxicology, 2018, 92(2):571-586
    Shimada T, Fujii-Kuriyama Y. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P4501A1 and 1B1[J]. Cancer Science, 2004, 95(1):1-6
    van Leeuwen L M, Evans R J, Jim K K, et al. A transgenic zebrafish model for the in vivo study of the blood and choroid plexus brain barriers using claudin 5[J]. Biology Open, 2018, 7(2):bio030494
    Zhang J J, Liss M, Wolburg H, et al. Involvement of claudins in zebrafish brain ventricle morphogenesis[J]. Annals of the New York Academy of Sciences, 2012, 1257:193-198
    Henkler F, Stolpmann K, Luch A. Exposure to polycyclic aromatic hydrocarbons:Bulky DNA adducts and cellular responses[J]. Experientia Supplementum, 2012, 101:107-131
    Chen M J, Yin J F, Liang Y, et al. Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish[J]. Aquatic Toxicology, 2016, 174:54-60
  • 加载中
计量
  • 文章访问数:  2466
  • HTML全文浏览数:  2466
  • PDF下载数:  87
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-26
孙晶, 刘玉玮, 胡献刚, 欧阳少虎. 环境浓度氧化石墨烯和多环芳烃复合暴露诱发成年斑马鱼脑组织的分子响应研究[J]. 生态毒理学报, 2022, 17(3): 256-267. doi: 10.7524/AJE.1673-5897.20211026002
引用本文: 孙晶, 刘玉玮, 胡献刚, 欧阳少虎. 环境浓度氧化石墨烯和多环芳烃复合暴露诱发成年斑马鱼脑组织的分子响应研究[J]. 生态毒理学报, 2022, 17(3): 256-267. doi: 10.7524/AJE.1673-5897.20211026002
Sun Jing, Liu Yuwei, Hu Xiangang, Ouyang Shaohu. Molecular Response in Adult Zebrafish Brain Induced by Environment-related Concentration Graphene Oxide and Polycyclic Aromatic Hydrocarbons[J]. Asian journal of ecotoxicology, 2022, 17(3): 256-267. doi: 10.7524/AJE.1673-5897.20211026002
Citation: Sun Jing, Liu Yuwei, Hu Xiangang, Ouyang Shaohu. Molecular Response in Adult Zebrafish Brain Induced by Environment-related Concentration Graphene Oxide and Polycyclic Aromatic Hydrocarbons[J]. Asian journal of ecotoxicology, 2022, 17(3): 256-267. doi: 10.7524/AJE.1673-5897.20211026002

环境浓度氧化石墨烯和多环芳烃复合暴露诱发成年斑马鱼脑组织的分子响应研究

    通讯作者: 欧阳少虎, E-mail: ouyangshaohu@nankai.edu.cn
    作者简介: 孙晶(1990—),女,博士,研究方向为环境监测与生态毒理学,E-mail:sunjing90s@yeah.net
  • 1. 生态环境部海河流域北海海域生态环境监督管理局生态环境监测与科学研究中心, 天津 300061;
  • 2. 南开大学环境科学与工程学院, 环境污染过程与基准教育部重点实验室, 天津市城市生态环境修复与污染防治重点实验室, 天津 300071
基金项目:

国家重点研发计划资助项目(2019YFC1804104);博士后面上项目(2020M680867);NSFC山东联合基金资助项目(U1906222);高等学校学科创新引智计划资助项目(T2017002)

摘要: 氧化石墨烯(graphene oxide,GO)是目前十分重要的人工纳米材料,且极有可能被排放到环境中。因而GO与环境中的共存污染物多环芳烃(polycyclic aromatic hydrocarbons,PAHs)对水生生物的复合暴露毒性及其相关机理值得进一步研究。使用成年斑马鱼为动物模型,选取水环境浓度的典型污染物16种优控PAHs与环境预测浓度的GO对成年斑马鱼进行21 d亚急性暴露,研究GO和PAHs复合暴露对成年斑马鱼脑组织的毒性效应及其分子机理。结果表明,GO暴露组和PAHs-GO复合暴露组在21 d的亚急性暴露中均不会诱发成年斑马鱼的死亡和畸形,但会降低斑马鱼脑组织细胞色素P4501B1酶(CYP1B1)和β-半乳糖苷酶(β-Gal)的含量;在分子水平上,0.1 mg·L-1 GO组(GO组)、5 μg·L-1 PAHs组(PAHs组)和0.1 mg·L-1 GO&5 μg·L-1 PAHs组(PAHs-GO组)诱发的差异基因数量和差异基因通路数量排序为PAHs组>GO-PAHs组>GO组。研究表明:(1)在环境预测浓度的GO与环境浓度PAHs对成年斑马鱼复合暴露时,对斑马鱼脑组织酶的影响GO占据主导地位;(2) PAHs-GO复合暴露组兼具GO和PAHs的分子毒性效应的特点,说明GO和PAHs在环境相关浓度下的复合暴露分子毒性值得注意;(3) GO组转录组氧化酶相关基因变化与酶含量结果相一致,暗示可以使用转录组来解释生物酶含量变化的分子机理。本文结果可为纳米材料与环境污染物的复合毒性效应和机理研究提供参考。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回