环境相关浓度的卡马西平对斑马鱼幼鱼抗氧化系统和神经递质系统的影响

杨慧婷, 谷孝鸿, 陈辉辉, 曾庆飞, 毛志刚, 李红敏, 葛优, 查金苗. 环境相关浓度的卡马西平对斑马鱼幼鱼抗氧化系统和神经递质系统的影响[J]. 生态毒理学报, 2022, 17(3): 268-276. doi: 10.7524/AJE.1673-5897.20211206002
引用本文: 杨慧婷, 谷孝鸿, 陈辉辉, 曾庆飞, 毛志刚, 李红敏, 葛优, 查金苗. 环境相关浓度的卡马西平对斑马鱼幼鱼抗氧化系统和神经递质系统的影响[J]. 生态毒理学报, 2022, 17(3): 268-276. doi: 10.7524/AJE.1673-5897.20211206002
Yang Huiting, Gu Xiaohong, Chen Huihui, Zeng Qingfei, Mao Zhigang, Li Hongmin, Ge You, Zha Jinmiao. Effects of Environment-related Concentrations of Carbamazepine on Antioxidant System and Neurotransmitter System of Juvenile Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(3): 268-276. doi: 10.7524/AJE.1673-5897.20211206002
Citation: Yang Huiting, Gu Xiaohong, Chen Huihui, Zeng Qingfei, Mao Zhigang, Li Hongmin, Ge You, Zha Jinmiao. Effects of Environment-related Concentrations of Carbamazepine on Antioxidant System and Neurotransmitter System of Juvenile Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(3): 268-276. doi: 10.7524/AJE.1673-5897.20211206002

环境相关浓度的卡马西平对斑马鱼幼鱼抗氧化系统和神经递质系统的影响

    作者简介: 杨慧婷(1996—),女,博士研究生,研究方向为鱼类生态学,E-mail:1933690477@qq.com
    通讯作者: 谷孝鸿, E-mail: xhgu@niglas.ac.cn 陈辉辉, E-mail: hhchen@niglas.ac.cn
  • 基金项目:

    国家自然科学基金资助项目(41907222);中国科学院饮用水科学与技术重点实验室专项经费(20K05KLDWST)

  • 中图分类号: X171.5

Effects of Environment-related Concentrations of Carbamazepine on Antioxidant System and Neurotransmitter System of Juvenile Zebrafish

    Corresponding authors: Gu Xiaohong, xhgu@niglas.ac.cn ;  Chen Huihui, hhchen@niglas.ac.cn
  • Fund Project:
  • 摘要: 卡马西平(carbamazepine,CBZ)是一种在临床上常用的抗癫痫药物,由于使用量巨大,且在污水处理厂中去除效率较低,在地表水中广泛被检出,其对非目标水生生物的影响已引起人们的广泛关注。然而目前缺乏有关环境相关浓度下的CBZ对鱼类的慢性毒性效应的研究。因此,以斑马鱼(Danio rerio)幼鱼为研究对象,以1 μg·L-1和10 μg·L-1 2种环境相关浓度为暴露浓度,通过测定斑马鱼幼鱼的体长、体质量、脑组织和肝脏中的抗氧化酶(超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT))活性和氧化产物(丙二醛(malonic dialdehyde,MDA))浓度、脑组织中神经递质降解酶(乙酰胆碱酯酶(acetylcholinesterase,AChE))活性、神经递质(γ-氨基丁酸(γ-aminobutyric acid,GABA)和谷氨酸(glutamate,Glu))浓度,以评估CBZ对斑马鱼幼鱼的生长发育、抗氧化系统以及神经递质系统的影响。结果表明,1 μg·L-1 CBZ暴露导致斑马鱼幼鱼脑组织中SOD活性、CAT活性和GABA浓度增加,肝脏中SOD活性降低、CAT活性增加和MDA浓度增加;10 μg·L-1 CBZ暴露导致斑马鱼幼鱼的体长增加,脑组织中SOD活性增加、AChE活性降低和GABA浓度增加,肝脏中CAT活性和MDA浓度增加。综上,环境相关浓度下CBZ的慢性暴露能够促进斑马鱼幼鱼的生长发育,诱导斑马鱼幼鱼产生氧化应激效应和神经毒性效应。
  • 加载中
  • Almeida Â, Calisto V, Domingues M R M, et al. Comparison of the toxicological impacts of carbamazepine and a mixture of its photodegradation products in Scrobicularia plana[J]. Journal of Hazardous Materials, 2017, 323:220-232
    Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment:A review of recent research data[J]. Toxicology Letters, 2002, 131(1-2):5-17
    Yan S H, Wang M, Liang X F, et al. Environmentally relevant concentrations of carbamazepine induce liver histopathological changes and a gender-specific response in hepatic proteome of Chinese rare minnows (Gobiocypris rarus)[J]. Environmental Pollution, 2018, 243:480-491
    Li Y, Zhang L Y, Liu X S, et al. Ranking and prioritizing pharmaceuticals in the aquatic environment of China[J]. Science of the Total Environment, 2019, 658:333-342
    Zhang Y J, Geißen S U, Gal C. Carbamazepine and diclofenac:Removal in wastewater treatment plants and occurrence in water bodies[J]. Chemosphere, 2008, 73(8):1151-1161
    Chen H H, Zha J M, Liang X F, et al. Effects of the human antiepileptic drug carbamazepine on the behavior, biomarkers, and heat shock proteins in the Asian clam Corbicula fluminea[J]. Aquatic Toxicology, 2014, 155:1-8
    Arnnok P, Singh R R, Burakham R, et al. Selective uptake and bioaccumulation of antidepressants in fish from effluent-impacted Niagara River[J]. Environmental Science & Technology, 2017, 51(18):10652-10662
    Zhou X F, Dai C M, Zhang Y L, et al. A preliminary study on the occurrence and behavior of carbamazepine (CBZ) in aquatic environment of Yangtze River Delta, China[J]. Environmental Monitoring and Assessment, 2011, 173(1):45-53
    Borova V L, Maragou N C, Gago-Ferrero P, et al. Highly sensitive determination of 68 psychoactive pharmaceuticals, illicit drugs, and related human metabolites in wastewater by liquid chromatography-tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2014, 406(17):4273-4285
    Nakada N, Hanamoto S, Jürgens M D, et al. Assessing the population equivalent and performance of wastewater treatment through the ratios of pharmaceuticals and personal care products present in a river basin:Application to the River Thames basin, UK[J]. Science of the Total Environment, 2017, 575:1100-1108
    Yan S H, Wang M, Zha J M, et al. Environmentally relevant concentrations of carbamazepine caused endocrine-disrupting effects on nontarget organisms, Chinese rare minnows (Gobiocypris rarus)[J]. Environmental Science & Technology, 2018, 52(2):886-894
    Barra Caracciolo A, Topp E, Grenni P. Pharmaceuticals in the environment:Biodegradation and effects on natural microbial communities. A review[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 106:25-36
    Chen H H, Gu X H, Zeng Q F, et al. Acute and chronic toxicity of carbamazepine on the release of chitobiase, molting, and reproduction in Daphnia similis[J]. International Journal of Environmental Research and Public Health, 2019, 16(2):209
    Chen H H, Gu X H, Zeng Q F, et al. Carbamazepine disrupts molting hormone signaling and inhibits molting and growth of Eriocheir sinensis at environmentally relevant concentrations[J]. Aquatic Toxicology, 2019, 208:138-145
    Qiang L Y, Cheng J P, Yi J, et al. Environmental concentration of carbamazepine accelerates fish embryonic development and disturbs larvae behavior[J]. Ecotoxicology, 2016, 25(7):1426-1437
    da Silva Santos N, Oliveira R, Lisboa C A, et al. Chronic effects of carbamazepine on zebrafish:Behavioral, reproductive and biochemical endpoints[J]. Ecotoxicology and Environmental Safety, 2018, 164:297-304
    Chen J F, Wang X T, Ge X Q, et al. Chronic perfluorooctanesulphonic acid (PFOS) exposure produces estrogenic effects in zebrafish[J]. Environmental Pollution, 2016, 218:702-708
    Michopoulos V, Wilson M E. Body weight decreases induced by estradiol in female rhesus monkeys are dependent upon social status[J]. Physiology & Behavior, 2011, 102(3-4):382-388
    Ambrósio A F, Soares-Da-Silva P, Carvalho C M, et al. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024[J]. Neurochemical Research, 2002, 27(1-2):121-130
    Barreiro-Iglesias A, Mysiak K S, Scott A L, et al. Serotonin promotes development and regeneration of spinal motor neurons in zebrafish[J]. Cell Reports, 2015, 13(5):924-932
    Bashammakh S,Würtele M, Kotnik K, et al. Serotonin is required for pharyngeal arch morphogenesis in zebrafish[J]. ScienceOpen Research, 2014:1
    Airhart M J, Lee D H, Wilson T D, et al. Adverse effects of serotonin depletion in developing zebrafish[J]. Neurotoxicology and Teratology, 2012, 34(1):152-160
    Maharajan K, Muthulakshmi S, Nataraj B, et al. Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio):A multi biomarker study[J]. Aquatic Toxicology, 2018, 196:132-145
    Wang C X, Harwood J D, Zhang Q M. Oxidative stress and DNA damage in common carp (Cyprinus carpio) exposed to the herbicide mesotrione[J]. Chemosphere, 2018, 193:1080-1086
    Li Y H, Wei L, Cao J R, et al. Oxidative stress, DNA damage and antioxidant enzyme activities in the Pacific white shrimp (Litopenaeus vannamei) when exposed to hypoxia and reoxygenation[J]. Chemosphere, 2016, 144:234-240
    Wang G H, Xiong D M, Wu M N, et al. Induction of time- and dose-dependent oxidative stress of triazophos to brain and liver in zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2020, 228:108640
    Zhang Q M, Zhang G L, Yin P J, et al. Toxicological effects of soil contaminated with spirotetramat to the earthworm Eisenia fetida[J]. Chemosphere, 2015, 139:138-145
    Ojha A, Yaduvanshi S K, Srivastava N. Effect of combined exposure of commonly used organophosphate pesticides on lipid peroxidation and antioxidant enzymes in rat tissues[J]. Pesticide Biochemistry and Physiology, 2011, 99(2):148-156
    Lushchak V I. Environmentally induced oxidative stress in aquatic animals[J]. Aquatic Toxicology, 2011, 101(1):13-30
    Zhang D L, Liu S Y, Zhang J, et al. Antioxidative responses in zebrafish liver exposed to sublethal doses Aphanizomenon flos-aquae DC-1 aphantoxins[J]. Ecotoxicology and Environmental Safety, 2015, 113:425-432
    Shin S M, Yang J H, Ki S H. Role of the Nrf2-ARE pathway in liver diseases[J]. Oxidative Medicine and Cellular Longevity, 2013, 2013:763257
    Jia D T, Li X W, Du S, et al. Single and combined effects of carbamazepine and copper on nervous and antioxidant systems of zebrafish (Danio rerio)[J]. Environmental Toxicology, 2020, 35(10):1091-1099
    Oyagbemi A A, Omobowale T O, Saba A B, et al. Gallic acid ameliorates cyclophosphamide-induced neurotoxicity in Wistar rats through free radical scavenging activity and improvement in antioxidant defense system[J]. Journal of Dietary Supplements, 2016, 13(4):402-419
    Sabatini S E, Juárez A B, Eppis M R, et al. Oxidative stress and antioxidant defenses in two green microalgae exposed to copper[J]. Ecotoxicology and Environmental Safety, 2009, 72(4):1200-1206
    Martin-Diaz L, Franzellitti S, Buratti S, et al. Effects of environmental concentrations of the antiepilectic drug carbamazepine on biomarkers and cAMP-mediated cell signaling in the mussel Mytilus galloprovincialis[J]. Aquatic Toxicology, 2009, 94(3):177-185
    Xie Z X, Lu G H, Li S, et al. Behavioral and biochemical responses in freshwater fish Carassius auratus exposed to sertraline[J]. Chemosphere, 2015, 135:146-155
    de Farias N O, Oliveira R, Sousa-Moura D, et al. Exposure to low concentration of fluoxetine affects development, behaviour and acetylcholinesterase activity of zebrafish embryos[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2019, 215:1-8
    Shi C H, He Y D, Liu J X, et al. Ecotoxicological effect of single and combined exposure of carbamazepine and cadmium on female Danio rerio:A multibiomarker study[J]. Applied Sciences, 2019, 9(7):1362
    Juhel G, Bayen S, Goh C, et al. Use of a suite of biomarkers to assess the effects of carbamazepine, bisphenol A, atrazine, and their mixtures on green mussels, Perna viridis[J]. Environmental Toxicology and Chemistry, 2017, 36(2):429-441
    Rhee J S, Kim B M, Jeong C B, et al. Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP, 2013, 158(4):216-224
    Pereira V M, Bortolotto J W, Kist L W, et al. Endosulfan exposure inhibits brain AChE activity and impairs swimming performance in adult zebrafish (Danio rerio)[J]. Neurotoxicology, 2012, 33(3):469-475
    Altenhofen S, Nabinger D D, Wiprich M T, et al. Tebuconazole alters morphological, behavioral and neurochemical parameters in larvae and adult zebrafish (Danio rerio)[J]. Chemosphere, 2017, 180:483-490
    Hasselmo M E. The role of acetylcholine in learning and memory[J]. Current Opinion in Neurobiology, 2006, 16(6):710-715
    Yang J L, Sykora P, Wilson D MⅢ, et al. The excitatory neurotransmitter glutamate stimulates DNA repair to increase neuronal resiliency[J]. Mechanisms of Ageing and Development, 2011, 132(8-9):405-411
    Yan W, Li L, Li G Y, et al. Microcystin-LR induces changes in the GABA neurotransmitter system of zebrafish[J]. Aquatic Toxicology, 2017, 188:170-176
    Saint-Amant L, Drapeau P. Motoneuron activity patterns related to the earliest behavior of the zebrafish embryo[J]. The Journal of Neuroscience:The Official Journal of the Society for Neuroscience, 2000, 20(11):3964-3972
    Prange O, Wong T P, Gerrow K, et al. A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38):13915-13920
    Bai Z H, Jia K, Chen G L, et al. Carbamazepine induces hepatotoxicity in zebrafish by inhibition of the Wnt/[QX(Y12#] β -catenin signaling pathway[J]. Environmental Pollution, 2021, 276:116688
    Thorn C F, Leckband S G, Kelsoe J, et al. PharmGKB summary:Carbamazepine pathway[J]. Pharmacogenetics and Genomics, 2011, 21(12):906-910
    Chen H H, Gu X H, Zeng Q F, et al. Characterization of the GABAergic system in Asian clam Corbicula fluminea:Phylogenetic analysis, tissue distribution, and response to the aquatic contaminant carbamazepine[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP, 2021, 239:108896
    Yu M, Feng Y L, Zhang X N, et al. Semicarbazide disturbs the reproductive system of male zebrafish (Danio rerio) through the GABAergic system[J]. Reproductive Toxicology, 2017, 73:149-157
    Zohar Y, Muñoz-Cueto J A, Elizur A, et al. Neuroendocrinology of reproduction in teleost fish[J]. General and Comparative Endocrinology, 2010, 165(3):438-455
  • 加载中
计量
  • 文章访问数:  3431
  • HTML全文浏览数:  3431
  • PDF下载数:  136
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-12-06
杨慧婷, 谷孝鸿, 陈辉辉, 曾庆飞, 毛志刚, 李红敏, 葛优, 查金苗. 环境相关浓度的卡马西平对斑马鱼幼鱼抗氧化系统和神经递质系统的影响[J]. 生态毒理学报, 2022, 17(3): 268-276. doi: 10.7524/AJE.1673-5897.20211206002
引用本文: 杨慧婷, 谷孝鸿, 陈辉辉, 曾庆飞, 毛志刚, 李红敏, 葛优, 查金苗. 环境相关浓度的卡马西平对斑马鱼幼鱼抗氧化系统和神经递质系统的影响[J]. 生态毒理学报, 2022, 17(3): 268-276. doi: 10.7524/AJE.1673-5897.20211206002
Yang Huiting, Gu Xiaohong, Chen Huihui, Zeng Qingfei, Mao Zhigang, Li Hongmin, Ge You, Zha Jinmiao. Effects of Environment-related Concentrations of Carbamazepine on Antioxidant System and Neurotransmitter System of Juvenile Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(3): 268-276. doi: 10.7524/AJE.1673-5897.20211206002
Citation: Yang Huiting, Gu Xiaohong, Chen Huihui, Zeng Qingfei, Mao Zhigang, Li Hongmin, Ge You, Zha Jinmiao. Effects of Environment-related Concentrations of Carbamazepine on Antioxidant System and Neurotransmitter System of Juvenile Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(3): 268-276. doi: 10.7524/AJE.1673-5897.20211206002

环境相关浓度的卡马西平对斑马鱼幼鱼抗氧化系统和神经递质系统的影响

    通讯作者: 谷孝鸿, E-mail: xhgu@niglas.ac.cn ;  陈辉辉, E-mail: hhchen@niglas.ac.cn
    作者简介: 杨慧婷(1996—),女,博士研究生,研究方向为鱼类生态学,E-mail:1933690477@qq.com
  • 1. 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008;
  • 2. 中国科学院大学, 北京 100049;
  • 3. 中国科学院生态环境研究中心 环境水质学国家重点实验室, 北京 100085
基金项目:

国家自然科学基金资助项目(41907222);中国科学院饮用水科学与技术重点实验室专项经费(20K05KLDWST)

摘要: 卡马西平(carbamazepine,CBZ)是一种在临床上常用的抗癫痫药物,由于使用量巨大,且在污水处理厂中去除效率较低,在地表水中广泛被检出,其对非目标水生生物的影响已引起人们的广泛关注。然而目前缺乏有关环境相关浓度下的CBZ对鱼类的慢性毒性效应的研究。因此,以斑马鱼(Danio rerio)幼鱼为研究对象,以1 μg·L-1和10 μg·L-1 2种环境相关浓度为暴露浓度,通过测定斑马鱼幼鱼的体长、体质量、脑组织和肝脏中的抗氧化酶(超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT))活性和氧化产物(丙二醛(malonic dialdehyde,MDA))浓度、脑组织中神经递质降解酶(乙酰胆碱酯酶(acetylcholinesterase,AChE))活性、神经递质(γ-氨基丁酸(γ-aminobutyric acid,GABA)和谷氨酸(glutamate,Glu))浓度,以评估CBZ对斑马鱼幼鱼的生长发育、抗氧化系统以及神经递质系统的影响。结果表明,1 μg·L-1 CBZ暴露导致斑马鱼幼鱼脑组织中SOD活性、CAT活性和GABA浓度增加,肝脏中SOD活性降低、CAT活性增加和MDA浓度增加;10 μg·L-1 CBZ暴露导致斑马鱼幼鱼的体长增加,脑组织中SOD活性增加、AChE活性降低和GABA浓度增加,肝脏中CAT活性和MDA浓度增加。综上,环境相关浓度下CBZ的慢性暴露能够促进斑马鱼幼鱼的生长发育,诱导斑马鱼幼鱼产生氧化应激效应和神经毒性效应。

English Abstract

参考文献 (52)

返回顶部

目录

/

返回文章
返回