稳恒磁场作用下微生物燃料电池的产电特性和电化学阻抗谱分析

殷瑶, 周枫, 唐波, 叶菲菲, 李辰晨, 刘勇弟, 黄光团. 稳恒磁场作用下微生物燃料电池的产电特性和电化学阻抗谱分析[J]. 环境工程学报, 2012, 6(11): 3965-3969.
引用本文: 殷瑶, 周枫, 唐波, 叶菲菲, 李辰晨, 刘勇弟, 黄光团. 稳恒磁场作用下微生物燃料电池的产电特性和电化学阻抗谱分析[J]. 环境工程学报, 2012, 6(11): 3965-3969.
Yin Yao, Zhou Feng, Tang Bo, Ye Feifei, Li Chenchen, Liu Yongdi, Huang Guangtuan. Analysis of electricity production and electrochemical impedance spectroscopy of microbial fuel cell under static magnetic field[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3965-3969.
Citation: Yin Yao, Zhou Feng, Tang Bo, Ye Feifei, Li Chenchen, Liu Yongdi, Huang Guangtuan. Analysis of electricity production and electrochemical impedance spectroscopy of microbial fuel cell under static magnetic field[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3965-3969.

稳恒磁场作用下微生物燃料电池的产电特性和电化学阻抗谱分析

  • 基金项目:

    国家自然科学基金资助项目(51078144)

  • 中图分类号: X703.1

Analysis of electricity production and electrochemical impedance spectroscopy of microbial fuel cell under static magnetic field

  • Fund Project:
  • 摘要: 对混合菌接种的双室微生物燃料电池加载磁场强度为175 mT的稳恒磁场,利用电化学交流阻抗等电化学分析方法,考察了在磁场作用下微生物燃料电池(MFC)产电性能的变化,分析了磁场对MFC各部分内阻的影响。加载磁场使已启动完成的MFC的产电明显增强,开路电压提高了10%。加载磁场后最大功率密度为2.08 W/m2,大于加载前的1.58 W/m2,表观内阻由170 Ω降至80 Ω。电化学阻抗谱分析确定了阳极、阴极和全电池的等效电路模型,拟合结果发现阳极极化内阻约为5 Ω。加载磁场使MFC的阴极极化内阻由74.98 Ω降至56.73 Ω。
  • 加载中
  • [1] Ashley E. F., Kelly P. N. Microbial fuel cells, a current review. Energies, 2010, 3(5): 899-919
    [2] Logan B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Micro., 2009, 7(5): 375-381
    [3] Zhou M., Chi M., Luo J., et al. An overview of electrode materials in microbial fuel cells. J. Power Sources, 2011, 196 (10): 4427-4435
    [4] Logan B. E. Microbial Fuel cells. New Jersey: John Wiley & Sons, Inc.,2008. 85-110
    [5] 姚璐, 李正龙, 刘红. 低强度超声波改善微生物燃料电池产电效能. 北京航空航天大学学报, 2006, 32 (12): 1472-1476 Yao L., Li Z., Liu H. Improve electricity generation of microbial fuel cells by low intensity ultrasound. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(12): 1472-1476 (in Chinese)
    [6] 李国栋. 2003-2004年生物磁学研究和应用的新进展. 生物磁学, 2004, 4(4): 25-26 Li G.L. New progress of research and application of Biomagnetism in 2003-2004. Biomagnetism, 2004, 4(4): 25-26 (in Chinese)
    [7] 毛宁,黄谚谚. 生物磁技术在工农业的应用及其机理探讨. 激光生物学报, 1998, 7(4): 306-309 Mao N., Huang Y.Y. Application of biomagnetic technique in industry and the analysis mechainism. Acta Laser Biology Sinica, 1998, 7(4): 306-309 (in Chinese)
    [8] 安燕, 程江, 杨卓如, 等. 微生物磁效应在废水处理中的应用. 化工环保, 2006, 26(6): 467-470 An Y., Cheng J., Yang Z.R., et al. Magnetic effect of microbe and its application to treatment of wastewater. Environmental Protection of Chemical Industry, 2006, 26(6): 467-470 (in Chinese)
    [9] Okuno K., Fujinami R., Ano T., et al. Disappearance of growth advantage in stationary phase phenomenon under a high magnetic field. Bioelectrochemistry, 2001, 53(2): 165-169
    [10] Dunca S., Creanga D.E., Ailiesei O., et al. Microorganisms growth with magnetic fluids. J. Magn. Magn. Mater., 2005, 289: 445-447
    [11] Li W., Sheng G., Liu X., et al. Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells. Biosens. Bioelectron., 2011, 26(10): 3987-3992
    [12] 曹楚南, 张鉴清. 电化学阻抗. 北京:科学出版社,2002
    [13] He Z., Wagner N., Minteer S. D., et al. An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy. Environ. Sci. Technol., 2006, 40 (17): 5212-5217
    [14] Qiao Y., Li C. M., Bao S. J., et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources, 2007, 170(1): 79-84
    [15] You S., Zhao Q., Zhang J., et al. A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. J. Power Sources, 2007, 173(1): 172-177
    [16] He Z., Mansfeld F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ. Sci., 2009, 2(2): 215-219
    [17] Ramasamy R. P., Gadhamshetty V., Nadeau L. J., et al. Impedance spectroscopy as a tool for non-intrusive detection of extracellular mediators in microbial fuel cells. Biotechnol. Bioeng., 2009, 104(5): 882-891
    [18] Cheng S. A., Logan B. E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun., 2007, 9(3): 492-496
    [19] Okada T., Wakayama N. I., Wang L., et al. The effect of magnetic field on the oxygen reduction reaction and its application in polymer electrolyte fuel cells. Electrochimica Acta, 2003, 48(5): 531-539
  • 加载中
计量
  • 文章访问数:  2618
  • HTML全文浏览数:  1349
  • PDF下载数:  3411
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-10-17
  • 刊出日期:  2012-11-09
殷瑶, 周枫, 唐波, 叶菲菲, 李辰晨, 刘勇弟, 黄光团. 稳恒磁场作用下微生物燃料电池的产电特性和电化学阻抗谱分析[J]. 环境工程学报, 2012, 6(11): 3965-3969.
引用本文: 殷瑶, 周枫, 唐波, 叶菲菲, 李辰晨, 刘勇弟, 黄光团. 稳恒磁场作用下微生物燃料电池的产电特性和电化学阻抗谱分析[J]. 环境工程学报, 2012, 6(11): 3965-3969.
Yin Yao, Zhou Feng, Tang Bo, Ye Feifei, Li Chenchen, Liu Yongdi, Huang Guangtuan. Analysis of electricity production and electrochemical impedance spectroscopy of microbial fuel cell under static magnetic field[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3965-3969.
Citation: Yin Yao, Zhou Feng, Tang Bo, Ye Feifei, Li Chenchen, Liu Yongdi, Huang Guangtuan. Analysis of electricity production and electrochemical impedance spectroscopy of microbial fuel cell under static magnetic field[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3965-3969.

稳恒磁场作用下微生物燃料电池的产电特性和电化学阻抗谱分析

  • 1. 华东理工大学资源与环境工程学院, 上海 200237
基金项目:

国家自然科学基金资助项目(51078144)

摘要: 对混合菌接种的双室微生物燃料电池加载磁场强度为175 mT的稳恒磁场,利用电化学交流阻抗等电化学分析方法,考察了在磁场作用下微生物燃料电池(MFC)产电性能的变化,分析了磁场对MFC各部分内阻的影响。加载磁场使已启动完成的MFC的产电明显增强,开路电压提高了10%。加载磁场后最大功率密度为2.08 W/m2,大于加载前的1.58 W/m2,表观内阻由170 Ω降至80 Ω。电化学阻抗谱分析确定了阳极、阴极和全电池的等效电路模型,拟合结果发现阳极极化内阻约为5 Ω。加载磁场使MFC的阴极极化内阻由74.98 Ω降至56.73 Ω。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回