[1] |
Ashley E. F., Kelly P. N. Microbial fuel cells, a current review. Energies, 2010, 3(5): 899-919
|
[2] |
Logan B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Micro., 2009, 7(5): 375-381
|
[3] |
Zhou M., Chi M., Luo J., et al. An overview of electrode materials in microbial fuel cells. J. Power Sources, 2011, 196 (10): 4427-4435
|
[4] |
Logan B. E. Microbial Fuel cells. New Jersey: John Wiley & Sons, Inc.,2008. 85-110
|
[5] |
姚璐, 李正龙, 刘红. 低强度超声波改善微生物燃料电池产电效能. 北京航空航天大学学报, 2006, 32 (12): 1472-1476 Yao L., Li Z., Liu H. Improve electricity generation of microbial fuel cells by low intensity ultrasound. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(12): 1472-1476 (in Chinese)
|
[6] |
李国栋. 2003-2004年生物磁学研究和应用的新进展. 生物磁学, 2004, 4(4): 25-26 Li G.L. New progress of research and application of Biomagnetism in 2003-2004. Biomagnetism, 2004, 4(4): 25-26 (in Chinese)
|
[7] |
毛宁,黄谚谚. 生物磁技术在工农业的应用及其机理探讨. 激光生物学报, 1998, 7(4): 306-309 Mao N., Huang Y.Y. Application of biomagnetic technique in industry and the analysis mechainism. Acta Laser Biology Sinica, 1998, 7(4): 306-309 (in Chinese)
|
[8] |
安燕, 程江, 杨卓如, 等. 微生物磁效应在废水处理中的应用. 化工环保, 2006, 26(6): 467-470 An Y., Cheng J., Yang Z.R., et al. Magnetic effect of microbe and its application to treatment of wastewater. Environmental Protection of Chemical Industry, 2006, 26(6): 467-470 (in Chinese)
|
[9] |
Okuno K., Fujinami R., Ano T., et al. Disappearance of growth advantage in stationary phase phenomenon under a high magnetic field. Bioelectrochemistry, 2001, 53(2): 165-169
|
[10] |
Dunca S., Creanga D.E., Ailiesei O., et al. Microorganisms growth with magnetic fluids. J. Magn. Magn. Mater., 2005, 289: 445-447
|
[11] |
Li W., Sheng G., Liu X., et al. Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells. Biosens. Bioelectron., 2011, 26(10): 3987-3992
|
[12] |
曹楚南, 张鉴清. 电化学阻抗. 北京:科学出版社,2002
|
[13] |
He Z., Wagner N., Minteer S. D., et al. An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy. Environ. Sci. Technol., 2006, 40 (17): 5212-5217
|
[14] |
Qiao Y., Li C. M., Bao S. J., et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources, 2007, 170(1): 79-84
|
[15] |
You S., Zhao Q., Zhang J., et al. A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. J. Power Sources, 2007, 173(1): 172-177
|
[16] |
He Z., Mansfeld F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ. Sci., 2009, 2(2): 215-219
|
[17] |
Ramasamy R. P., Gadhamshetty V., Nadeau L. J., et al. Impedance spectroscopy as a tool for non-intrusive detection of extracellular mediators in microbial fuel cells. Biotechnol. Bioeng., 2009, 104(5): 882-891
|
[18] |
Cheng S. A., Logan B. E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun., 2007, 9(3): 492-496
|
[19] |
Okada T., Wakayama N. I., Wang L., et al. The effect of magnetic field on the oxygen reduction reaction and its application in polymer electrolyte fuel cells. Electrochimica Acta, 2003, 48(5): 531-539
|