超临界水氧化处理棉纺织品印染废水

王齐, 吕永康, 张荣, 毕继诚. 超临界水氧化处理棉纺织品印染废水[J]. 环境工程学报, 2012, 6(11): 3959-3964.
引用本文: 王齐, 吕永康, 张荣, 毕继诚. 超临界水氧化处理棉纺织品印染废水[J]. 环境工程学报, 2012, 6(11): 3959-3964.
Wang Qi, Lü Yongkang, Zhang Rong, Bi Jicheng. Supercritical water oxidation of cotton textiles dyeing wastewater[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3959-3964.
Citation: Wang Qi, Lü Yongkang, Zhang Rong, Bi Jicheng. Supercritical water oxidation of cotton textiles dyeing wastewater[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3959-3964.

超临界水氧化处理棉纺织品印染废水

  • 基金项目:

    国家自然科学基金资助项目(20506028)

  • 中图分类号: X791

Supercritical water oxidation of cotton textiles dyeing wastewater

  • Fund Project:
  • 摘要: 在温度400~600℃、压力25 MPa、停留时间10~45 s、过氧比0%~400% 条件下,用超临界水氧化(SCWO)法在连续管式反应器中处理棉纺织品印染废水。分析了工艺条件对总有机碳(TOC)及氨氮(NH3-N)降解效率的影响。研究表明,温度是影响TOC降解的最重要因素,不同温度下,降解率随过氧比变化的趋势不同。在450℃、停留时间20 s、过氧比300% 时,废水TOC降解达98.94%。NH3-N的降解与反应温度和氧化剂量密切相关。当过氧比300%,温度从400℃上升到600℃时,NH3-N的浓度从55.42 mg/L下降到3.31 mg/L,而600℃没有氧化剂存在时氨不易降解。450℃时随着过氧比增大NH3-N浓度略有下降,在该温度下停留时间延长对NH3-N降解无显著影响。
  • 加载中
  • [1] 朱虹,孙杰. 印染废水处理技术. 北京:中国纺织出版社,2004.189-215
    [2] 杨书铭,黄长盾.纺织印染工业废水治理技术. 北京:化学工业出版社,2002.30-36
    [3] Robinson T., McMullan G., Marchant R., et al. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology,2001, 77(3): 247-255
    [4] Söüt Onur Ö., Akgün M. Treatment of dyehouse waste-water by supercritical water oxidation: A case study. Journal of Chemical Technology and Biotechnology, 2010, 85(5):640-647
    [5] Ciardelli G., Ranieri N. The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation. Water Research, 2001, 35(2): 567-572
    [6] Chen G. Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 2004, 38(1): 11-41
    [7] Ciardelli G., Corsi L., Marcucci M. Membrane separation for wastewater reuse in the textile industry. Resources, Conservation and Recycling, 2001, 31(2): 189-197
    [8] Lee D.K., Cho I.C., Lee G.S. Catalytic wet oxidation of reactive dyes with H2/O2 mixture on Pd-Pt/Al2O3 catalysts. Separation and Purification Technology, 2004, 34(3): 43-50
    [9] 周文俊,钱仁渊.催化湿式氧化法处理含酚废水.南京工业大学学报,2004, 26(1): 63-67 Zhou Wenjun, Qian Renyuan. Catalytic wet oxidation of phenolic wastewater. Journal of Nanjing University of Technology, 2004, 26(1): 63-67 (in Chinese)
    [10] Veriansyah B., Kim J.D. Supercritical water oxidation for the destruction of toxic organic wastewaters: A review. Journal of Environmental Sciences, 2007, 19(5): 513-522
    [11] Shin Y.H., Shin N.C., Veriansyah B., et al. Supercritical water oxidation of wastewater from acrylonitrile manufacturing plant. Journal of Hazard. Mater., 2009, 163(2):1142-1147
    [12] Gong W., Li F., Xi D.L. Oxidation of industrial dyeing wastewater by supercritical water oxidation in transpiring-wall reactor. Water Environment Research, 2008, 80(2):186-192
    [13] Söüt Onur Ö., Akgün M. Removal of C.I. Basic Blue 41 from aqueous solution by supercritical water oxidation in continuous-flow reactor. Journal of Industrial and Engineering Chemistry, 2009, 15(6): 803-808
    [14] Söüt Onur Ö., Akgün M. Treatment of textile wastewater by SCWO in a tube reactor. Journal of Supercritical Fluids, 2007, 43(1): 106-111
    [15] Harvey A.H., Peskin A.P., Klein S.A. NIST/ASME Steam Properties, NIST Standard Reference Database 10, Version 2.2. Gaithersburg, MD: National Institute of Standard and Technology, 2000
    [16] Du X., Zhang R., Gan Z., et al. Treatment of high strength coking wastewater by supercritical water oxidation. Fuel, 2010, doi:10.1016/j.fuel.2010.09.018
    [17] Segond N., Matsumura Y., Yamamoto K. Determination of ammonia oxidation rate in sub-and supercritical water. Industrial & Engineering Chemistry Research, 2002, 41(24): 6020-6027
    [18] Al-Duri B., Pinto L., Ashraf-Ball N.H. Thermal abatement of nitrogen-containing hydrocarbons by non-catalytic supercritical water oxidation (SCWO). Journal of Materials Science, 2008, 43(4):1421-1428
    [19] 马春燕.印染废水深度处理及回用技术研究. 上海: 东华大学博士学位论文,2007. 29-32 Ma Chunyan. Study on advanced treatment and reuse technology of printing and dyeing wastewater. Shanghai: Doctor Dissertation of Donghua University,2007. 29-32(in Chinese)
  • 加载中
计量
  • 文章访问数:  2252
  • HTML全文浏览数:  1138
  • PDF下载数:  1946
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-10-14
  • 刊出日期:  2012-11-09
王齐, 吕永康, 张荣, 毕继诚. 超临界水氧化处理棉纺织品印染废水[J]. 环境工程学报, 2012, 6(11): 3959-3964.
引用本文: 王齐, 吕永康, 张荣, 毕继诚. 超临界水氧化处理棉纺织品印染废水[J]. 环境工程学报, 2012, 6(11): 3959-3964.
Wang Qi, Lü Yongkang, Zhang Rong, Bi Jicheng. Supercritical water oxidation of cotton textiles dyeing wastewater[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3959-3964.
Citation: Wang Qi, Lü Yongkang, Zhang Rong, Bi Jicheng. Supercritical water oxidation of cotton textiles dyeing wastewater[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3959-3964.

超临界水氧化处理棉纺织品印染废水

  • 1.  太原理工大学化学化工学院,太原 030024
  • 2.  太原科技大学化学与生物工程学院,太原 030021
  • 3.  中国科学院山西煤炭化学研究所煤转化国家重点实验室,太原 030001
基金项目:

国家自然科学基金资助项目(20506028)

摘要: 在温度400~600℃、压力25 MPa、停留时间10~45 s、过氧比0%~400% 条件下,用超临界水氧化(SCWO)法在连续管式反应器中处理棉纺织品印染废水。分析了工艺条件对总有机碳(TOC)及氨氮(NH3-N)降解效率的影响。研究表明,温度是影响TOC降解的最重要因素,不同温度下,降解率随过氧比变化的趋势不同。在450℃、停留时间20 s、过氧比300% 时,废水TOC降解达98.94%。NH3-N的降解与反应温度和氧化剂量密切相关。当过氧比300%,温度从400℃上升到600℃时,NH3-N的浓度从55.42 mg/L下降到3.31 mg/L,而600℃没有氧化剂存在时氨不易降解。450℃时随着过氧比增大NH3-N浓度略有下降,在该温度下停留时间延长对NH3-N降解无显著影响。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回