-
氯化石蜡(CPs)是一类氯代烷烃类混合物,广泛应用于纺织品和橡胶的阻燃剂、塑料增塑剂、金属加工液[1]. 它是我国污染最严重的环境新污染物之一[2],环境中CPs的严重污染已经威胁到我国农产品质量安全,尤其是动物源性农产品[3 − 4]. 根据碳链长度,CPs可分为短链(SCCPs,C10-13)、中链(MCCPs,C14-17)和长链(LCCPs,C≥18)CPs. 早期CPs的大多数研究仅限于SCCPs和MCCPs. 随着研究的深入,发现它们对水生生物具有极高的毒性,同时还具有环境持久性、生物富集性以及远距离迁移性[5 − 6],促使SCCPs和MCCPs分别被列入斯德哥尔摩公约的持久性有机污染物(POPs)禁用清单[7]和候选清单[8]. 近期的研究显示,LCCPs对动物也具有生殖毒性和发育毒性[9],同时也具有环境持久性[10]. 然而,关于LCCPs的生态/健康风险评估数据较为有限[9].
研究显示,大多数动物优先富集碳链相对较短的SCCPs[11 − 13],而禽类则优先富集碳链相对较长的LCCPs[14 − 16],表明CPs在禽体内的富集方向不同于其他动物. CPs在动物体内代谢能力的强弱是影响其生物富集差异性的重要因素,生物富集是CPs生态/健康风险评估的重要因素. 早期Nilsen等[17]将大鼠通过腹腔注射的方式暴露SCCPs和LCCPs,然后通过测定肝脏增重以及P450酶浓度增加程度来判别二者在大鼠体内代谢能力的大小;随后,Brunström等[18]将CPs注入鸡蛋的蛋黄,再将鸡蛋孵化20 d,然后采用类似的方法研究了鸡胚胎对SCCPs和LCCPs代谢能力的大小. 然而,以上方法相对较复杂. 肝微粒体离体代谢目标化合物是模拟其在动物体内代谢的重要手段. 由于CPs的组成较为复杂,且它们属于高度脂溶性化合物,肝微粒体对其代谢能力有限,采用肝微粒体直接离体代谢底物时,几乎无法观察到底物的消耗,故在动物肝微粒体离体代谢CPs实验中很少报道其代谢清除率[19].
考虑到血清蛋白在生物体内可作为外源性物质转运的载体,本研究采用胎牛血清作为CPs的载体,一方面,可使得高度疏水的CPs与血清有效结合,促进CPs与肝微粒体蛋白酶反应;另一方面,可有效避免溶解底物的乙腈溶剂对代谢酶的毒性作用,从而建立一种高效的鸡肝微粒体离体代谢CPs方法. 通过分析底物浓度、CPs碳链长度以及氯原子数对CPs代谢清除率的影响,研究不同碳链长度CPs同系物在鸡体内代谢清除规律.
-
超高效液相色谱-电喷雾离子源-四极杆-静电场轨道阱高分辨质谱仪(UPLC-ESI-Q-Orbitrap HRMS,美国Thermo Fisher Scientific公司);超低温冰箱(THERMO902;美国Thermo Fisher Scientific公司);高速冷冻离心机(5804R;德国Eppendorf公司);水浴恒温振荡器(SHA-B;常州澳华仪器有限公司). SCCPs标准品(C10-13, 51.5% Cl,55.5% Cl,63% Cl;100 μg·mL−1)、MCCPs标准品(C14-17, 42% Cl,52% Cl,57% Cl;100 μg·mL−1)、LCCPs标准品(C18-20, 36% Cl,49% Cl;100 μg·mL−1)(德国Dr. Ehrenstorfer公司);鸡肝微粒体(20 mg·mL−1,0.5 mL)、溶液A(含26.1 mmol·L−1 NADP辅酶、66 mmol·L−1葡萄糖-6-磷酸和 MgCl2,2.5 mL)、溶液B(含40 U·mL−1葡萄糖-6-磷酸脱氢酶,0.5 mL)(武汉普莱特生物医药有限公司);胎牛血清(德国Sigma公司,500 mL);四甲基氯化铵(离子对色谱级,≥99.0%;上海安谱实验科技有限公司);乙腈(农残级;德国CNW公司).
-
取CPs混合标准品(最终浓度0.2—1 μg·mL−1)的乙腈溶液置于1.5 mL离心管底部,加入10 μL胎牛血清,轻微涡旋,4 oC静置平衡12 h. 冰浴条件下,依次加入100 mmol·L−1磷酸钾缓冲盐(pH=7.4)和鸡肝微粒体(最终浓度为0.5 mg·mL−1),置于37 oC振荡水浴锅预孵化5 min,再加入NADPH酶循环体系(A液25 μL和B液5 μL)开始反应,最终反应体系为0.5 mL. 反应时间分别设置为0、10、30、60、120、240 min. 反应结束后,将反应体系迅速至于冰浴中,并迅速加入0.5 mL冰冷乙腈淬灭反应. 离心(4 oC,10000 r·min−1,5 min),取上清液,待仪器分析CPs分子式同系物的含量. 每个样品3—5个平行样.
-
采用本实验室前期建立的UPLC-ESI-Q-Orbitrap HRMS法测定CPs[15]. 色谱条件:Accucore C18色谱柱(2.1×100 mm,2.6 μm;美国Thermo Fisher Scientific公司);流动相组成为水(A相)和0.05 mmol·L−1四甲基氯化铵的乙腈溶液(B相);流速为0.3 mL·min−1;进样量5 μL;初始流动相为70%A相和30%B相,保持2 min,3 min内B相逐渐调整为70%,1 min内B相调整为100%,保持4 min,1 min内B相降低为30%,保持3 min.
质谱条件:喷雾电压2.5 kV;毛细管温度275 ℃;辅助气加热器温度300 ℃;鞘气流速46 arb;辅助气流速5 arb;检测器为Orbitrap;质谱分辨率为70 000 FWHM;扫描范围为100—1200 m/z;最大注入时间为200 ms;MS自动增益控制目标为1.0×106;监测离子为[M+Cl]−离子;质量偏差为5 ppm.
-
本研究以SCCPs混合标准品(51.5% Cl、55.5% Cl、63% Cl等量混合)为目标化合物进行鸡肝微粒体离体代谢方法的优化. 参考文献报道的方法[20],直接将SCCPs混合标准品(反应浓度1 μg·mL−1)作为底物时,几乎观察不到底物的消耗. 考虑到离体状态下肝微粒体的代谢能力有限,尝试通过降低底物浓度来测定其代谢消除率;由于CPs的分析方法灵敏度相比于其他卤代有机污染物(OHPs)更低,CPs的反应总浓度至少达到0.2 μg·mL−1才能满足后续检测的需求. 如图1所示,将SCCPs的反应总浓度降低为0.2 μg·mL−1时,SCCPs同系物的代谢清除率仍不超过20%(图1). 然而,在加入与底物溶液等体积的胎牛血清作为SCCPs的载体后,SCCPs同系物的代谢清除率提高了3—6倍,这是因为SCCPs属于高度疏水性化合物[21],血清作为载体可以促进SCCPs与微粒体蛋白酶结合,进而促进代谢反应;当血清加入量提高到底物溶液体积的10倍时,其代谢清除率并没有进一步提高,表明血清的加入量为1—10倍时,几乎不会影响代谢清除率.
值得注意的是,在传统方法中,由于溶解底物的有机溶剂(二甲基亚砜、乙腈、丙酮等)对代谢酶具有一定的毒性,反应体系中有机溶剂的体积通常不得超过最终反应体系的1%[22]. 然而,在本研究中,即使将溶解底物的有机溶剂体积提高到3%,其代谢清除率仍不受影响. 这是因为血清蛋白能够吸收有机溶剂,从而避免底物溶液中有机溶剂对微粒体蛋白酶活性的破坏.
-
考虑到CPs各同系物具有类似的化学结构,它们在动物肝脏的代谢可能存在竞争性抑制,故本研究采用CPs混合标准品(SCCPs、MCCPs、LCCPs等量混合)作为底物来考察鸡肝微粒体对不同碳链长度和氯原子数CPs同系物的代谢清除规律. 由于C10-、C16-、C19-、C20-CPs在SCCPs、MCCPs、LCCPs标样中所占比例非常低[15],在本研究的CPs混标标准品中所占比例甚至低于1%,在分析低浓度的不同碳链长度CPs代谢清除规律时会产生较大的误差,故在分析数据时将它们剔除.
通过观察SCCPs、MCCPs、LCCPs中主要的同系物Cl7-CPs代谢清除率随着孵育时间的变化趋势,研究碳链长度对代谢清除率的影响. 结果如图2所示,随着孵育时间的增加,不同碳链长度的Cl7-CPs同系物的代谢清除率均逐步增加,尤其是0—30 min内代谢清除率增加最为显著. 在相同反应时间内,代谢消除率大小顺序为C11> C12> C13> C14> C15> C17> C18,表明鸡肝微粒体对CPs的代谢清除能力表现为随着碳链长度的增加而降低的趋势.
如图3所示,相同碳链长度CPs分子式同系物的代谢清除率大小顺序为Cl5> Cl6> Cl7> Cl8> Cl9,表明鸡肝微粒体对CPs的代谢清除率随着碳链长度或氯原子数的增加而降低. 这是因为碳链较长和氯原子数较多的CPs分子式同系物空间位阻较大,不利于底物与代谢酶的结合. 这一观点在P450酶离体代谢多氯联苯(PCBs)同系物的实验中得到证实——肝P450酶对PCBs的代谢能力随着位阻的增加而降低[23]. 其原因是:OHPs的代谢是通过形成反应性OHP中间体与微粒体蛋白之间共价加合物而进行[24],微粒体蛋白酶由于其三维结构而表现出底物选择性,底物的空间位阻越大,形成共价加合物的可能性越小.
不同浓度CPs同系物的鸡肝微粒体离体代谢清除率如图3所示. 对于相同的CPs分子式同系物,不同浓度下的代谢清除率大小顺序为:0.2 μg·mL−1 > 0.5 μg·mL−1 >1.0 μg·mL−1,表明鸡肝微粒体对CPs的代谢清除率随着底物浓度的增加而降低,这与肝微粒体的离体代谢能力受限有关.
此外,本研究中鸡肝微粒体对CPs的代谢清除规律与美国环境保护署报道的不同CPs分子式同系物在动物体内代谢的难易程度一致[9],证实了本研究采用血清作为CPs载体来促进CPs代谢方法的可靠性.
-
本研究建立了一种血清促进的鸡肝微粒体离体代谢CPs方法. 该方法以少量血清作为CPs的载体,促进了CPs与微粒体蛋白酶的结合,显著提高了CPs的代谢清除率. 当血清加入量为底物溶液体积的1—10倍时,血清的加入量几乎不影响CPs的代谢清除率;该方法中溶解底物的有机溶剂的体积可高达反应总体积的3%;另外,反应终止后,无需提取步骤,方法简洁,适合批量样品的快速处理. 本研究将方法应用于肝微粒体离体代谢CPs清除规律的研究,结果显示:鸡肝微粒体对CPs的代谢清除率,随着底物浓度的增加而降低,也随着CPs碳链长度和氯原子数的增加而降低. 本研究将为动物肝微粒体离体代谢CPs研究提供一种高效的方法,同时也为其他疏水性毒害有机物的肝微粒体离体代谢研究提供一种新的方法参考,具有较好的应用前景.
基于血清促进的鸡肝微粒体离体代谢氯化石蜡方法及其清除规律
A method and clearance pattern for in vitro metabolism of chlorinated paraffin in chicken liver microsomes based on serum promotion
-
摘要: 研究氯化石蜡(CPs)在动物体内代谢清除规律是探讨其生物富集机制的重要依据. 肝微粒体离体代谢目标化合物是模拟其在动物体内代谢的重要手段. 通过优化鸡肝微粒体离体代谢CPs实验方法,采用血清作为添加剂,建立一种高效的鸡肝微粒体离体代谢CPs方法. 该方法使得溶解底物的有机溶剂体积高达反应总体积的3%,血清加入量为底物溶液体积的1—10倍;反应终止后,无需提取步骤,方法简洁,实现样品的快速处理. 方法成功应用于鸡肝微粒体离体代谢CPs清除规律的研究. 研究显示,在无血清条件下,鸡肝微粒体孵育底物(0.2 μg·mL−1)90 min时,短链氯化石蜡(SCCPs)分子式同系物的代谢清除率均低于20%;然而,加入少量胎牛血清作为底物的载体后,相同孵育时间内,SCCPs分子式同系物的代谢清除率得到显著提高,C11Cl6-8的代谢清除率甚至超过80%;鸡肝微粒体对CPs的代谢清除率,随着底物浓度、CPs碳链长度以及氯原子数的增加而降低. 本研究为动物肝微粒体离体代谢CPs研究提供一种高效的方法,同时也为其他疏水性毒害有机物的肝微粒体离体代谢研究提供一种新的方法参考.Abstract: It is an important basis for exploring their bioaccumulation mechanisms to study the metabolic clearance patterns of chlorinated paraffins (CPs) in animals. In vitro metabolism of target compounds by liver microsomes is an important means to simulate its metabolism in animals. By optimizing the method of CPs metabolism by chicken liver microsome in vitro, using serum as an additive agent, a high efficient method of CPs metabolism by chicken liver microsome in vitro was established. In this method, the volume of organic solvent dissolving the substrate could be as high as 3% of the total reaction volume, and the amount of serum added was one to ten times of the volume of substrate solution. After the termination of the reaction, there was no need to extract steps, and the method was simple, so that the rapid processing of samples was realized. The method was successfully applied to the study of CPs clearance by chicken liver microsomes in vitro. The results showed that under serum-free conditions, the metabolic clearance rates of all short chain chlorinated paraffins (SCCPs) with molecular formula homologues were lower than 20% when chicken liver microsomes were incubated with substrates for 90 min. However, after adding a small amount of serum as the carrier of substrate, the metabolic clearance ratio of SCCPs molecular formula homologues was significantly improved within the same incubation time, and the metabolic clearance ratio of C11Cl6-8 was even more than 80%. This is the first time to reveal the metabolic clearance of CPs by liver microsomes in vitro: The metabolic clearance of CPs by chicken liver microsomes decreased with the increase of substrate concentration, CPs carbon chain length and their number of chlorine atoms. This study will provide an efficient method for the study of CPs metabolism by animal liver microsomes in vitro. Meanwhile, it will also provides a new method reference for the study of liver microsome metabolism of other hydrophobic compounds in vitro.
-
Key words:
- serum /
- chlorinated paraffins /
- liver microsomes /
- metabolic clearance ratio
-
-
图 1 鸡肝微粒体对SCCPs同系物的代谢清除率(SCCPs反应总浓度为0.2 μg·mL−1,反应时间90 min;0、1、10分别代表血清加入量为底物溶液体积的0倍、1倍和10倍)
Figure 1. The metabolic clearance ratio of SCCPs homologues by chicken liver microsomes (the total concentration of SCCPs in the final reaction was 0.2 μg·mL−1, and the reaction time was 90 min; 0, 1, and 10 represent serum addition amounts equal to 0, 1, and 10 times the volume of the substrate solution, respectively).
图 3 CPs在反应体系中总浓度分别为0.2、0.5、1 μg·mL−1时,不同氯原子数的C12-、C14-、C18-CPs同系物的鸡肝微粒体代谢清除率(反应时间60 min)
Figure 3. When the total concentration of CPs in the reaction system was 0.2, 0.5 and 1.0 μg·mL−1, respectively, metabolic clearance ratio of C12-、C14-、C18-CPs with different chlorine atom number by chicken liver microsomes ( the reaction time was 60 min)
-
[1] MU Y W, CHENG D, ZHANG C L, et al. The potential health risks of short-chain chlorinated paraffin: A mini-review from a toxicological perspective[J]. Science of the Total Environment, 2023, 872: 162187. doi: 10.1016/j.scitotenv.2023.162187 [2] HUANG J W, BAI Y Y, ZEESHAN M, et al. Effects of exposure to chlorinated paraffins on human health: A scoping review[J]. Science of the Total Environment, 2023, 886: 163953. doi: 10.1016/j.scitotenv.2023.163953 [3] CUI L L, GAO L R, ZHENG M H, et al. Short- and medium-chain chlorinated paraffins in foods from the sixth Chinese total diet study: Occurrences and estimates of dietary intakes in South China[J]. Journal of Agricultural and Food Chemistry, 2020, 68(34): 9043-9051. doi: 10.1021/acs.jafc.0c03491 [4] LIU Y, WANG S, GAO L R, et al. Exposure to chlorinated paraffins in the sixth total diet study - China, 2016-2019[J]. China CDC Weekly, 2022, 4(9): 172-175. doi: 10.46234/ccdcw2022.043 [5] POPRC. Risk Profile Document UNEP/POPS/POPRC. 12/11/Add. 3. Risk management evaluation on short-chain chlorinated paraffins[R]. 2016: United Nations Environmental Programme Stockholm Convention on Persistent Organic Pollutants, Geneva. [6] UNEP. Proposal to list chlorinated paraffins with carbon chain lengths in the range C14-17 and chlorination levels at or exceeding 45 per cent chlorine by weight in Annexes A, B and/or C to the Stockholm Convention on Persistent Organic Pollutants[R]. 2021: UNEP/POPS/POPRC. 17/6. [7] POPRC. Report of the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants on the work of its eighth meeting[R]. 2017: UNEP/POPS/COP. 8/32. [8] UNEP. Candidate POPs Chlorinated paraffins with carbon chain lengths in the range C14-17 and chlorination levels at or exceeding 45 per cent chlorine by weight[EB]. 2022: [9] USEPA. TSCA new chemicals review program standard review risk assessment on medium-chain chlorinated paraffins (PMN P-12-0282, P-12-0283) and Long-Chain Chlorinated Paraffins (PMN P-12-0284)[R]. 2015: [10] YUAN B, BRÜCHERT V, SOBEK A, et al. Temporal trends of C8-C36 chlorinated paraffins in Swedish coastal sediment cores over the past 80 years[J]. Environmental Science & Technology, 2017, 51(24): 14199-14208. [11] WANG R H, GAO L R, ZHENG M H, et al. Short- and medium-chain chlorinated paraffins in aquatic foods from 18 Chinese Provinces: Occurrence, spatial distributions, and risk assessment[J]. Science of the Total Environment, 2018, 615: 1199-1206. doi: 10.1016/j.scitotenv.2017.09.327 [12] HUANG H T, GAO L R, ZHENG M H, et al. Dietary exposure to short- and medium-chain chlorinated paraffins in meat and meat products from 20 provinces of China[J]. Environmental Pollution, 2018, 233: 439-445. doi: 10.1016/j.envpol.2017.10.022 [13] DONG S J, ZHANG S, LI X M, et al. Occurrence of short- and medium-chain chlorinated paraffins in raw dairy cow milk from five Chinese Provinces[J]. Environment International, 2020, 136: 105466. doi: 10.1016/j.envint.2020.105466 [14] YUAN B, VORKAMP K, ROOS A M, et al. Accumulation of short-, medium-, and long-chain chlorinated paraffins in marine and terrestrial animals from Scandinavia[J]. Environmental Science & Technology, 2019, 53(7): 3526-3537. [15] HUANG X M, DING C H, SU Q Q, et al. A simplified method for determination of short-, medium-, and long-chain chlorinated paraffins using tetramethyl ammonium chloride as mobile phase modifier[J]. Journal of Chromatography. A, 2021, 1642: 462002. doi: 10.1016/j.chroma.2021.462002 [16] MÉZIÈRE M, MARCHAND P, HUTINET S, et al. Transfer of short-, medium-, and long-chain chlorinated paraffins to eggs of laying hens after dietary exposure[J]. Food Chemistry, 2021, 343: 128491. doi: 10.1016/j.foodchem.2020.128491 [17] NILSEN O G, TOFTGÅRD R, GLAUMANN H. Effects of chlorinated paraffins on rat liver microsomal activities and morphology[J]. Archives of Toxicology, 1981, 49(1): 1-13. doi: 10.1007/BF00352066 [18] BRUNSTRÖM B. Effects of chlorinated paraffins on liver weight, cytochrome P-450 concentration and microsomal enzyme activities in chick embryos[J]. Archives of Toxicology, 1985, 57(1): 69-71. doi: 10.1007/BF00286579 [19] LIN L, ABDALLAH M A E, CHEN L J, et al. Comparative in vitro metabolism of short chain chlorinated paraffins (SCCPs) by human and chicken liver microsomes: First insight into heptachlorodecanes[J]. Science of the Total Environment, 2022, 851(Part 2): 158261. [20] ZHENG X B, ERRATICO C, ABDALLAH M A E, et al. In vitro metabolism of BDE-47, BDE-99, and α-, β-, γ-HBCD isomers by chicken liver microsomes[J]. Environmental Research, 2015, 143(Part A): 221-228. [21] YU X, McPHEDRAN K N, HUANG R F. Chlorinated paraffins: A review of sample preparation, instrumental analysis, and occurrence and distribution in food samples[J]. Environmental Pollution, 2023, 318: 120875. doi: 10.1016/j.envpol.2022.120875 [22] ERRATICO C, ZHENG X B, van den EEDE N, et al. Stereoselective metabolism of α-, β-, and γ-hexabromocyclododecanes (HBCDs) by human liver microsomes and CYP3A4[J]. Environmental Science & Technology, 2016, 50(15): 8263-8273. [23] WARNER N A, MARTIN J W, WONG C S. Chiral polychlorinated biphenyls are biotransformed enantioselectively by mammalian cytochrome P-450 isozymes to form hydroxylated metabolites[J]. Environmental Science & Technology, 2009, 43(1): 114-121. [24] SHIMADA T, SATO R. Covalent binding of polychlorinated biphenyls to rat liver microsomes in vitro: Nature of reactive metabolites and target macromolecules[J]. Toxicology and Applied Pharmacology, 1980, 55(3): 490-500. doi: 10.1016/0041-008X(80)90051-4 -