-
氯化石蜡(CPs)是一类氯代烷烃类混合物,广泛应用于纺织品和橡胶的阻燃剂、塑料增塑剂、金属加工液[1]. 它是我国污染最严重的环境新污染物之一[2],环境中CPs的严重污染已经威胁到我国农产品质量安全,尤其是动物源性农产品[3 − 4]. 根据碳链长度,CPs可分为短链(SCCPs,C10-13)、中链(MCCPs,C14-17)和长链(LCCPs,C≥18)CPs. 早期CPs的大多数研究仅限于SCCPs和MCCPs. 随着研究的深入,发现它们对水生生物具有极高的毒性,同时还具有环境持久性、生物富集性以及远距离迁移性[5 − 6],促使SCCPs和MCCPs分别被列入斯德哥尔摩公约的持久性有机污染物(POPs)禁用清单[7]和候选清单[8]. 近期的研究显示,LCCPs对动物也具有生殖毒性和发育毒性[9],同时也具有环境持久性[10]. 然而,关于LCCPs的生态/健康风险评估数据较为有限[9].
研究显示,大多数动物优先富集碳链相对较短的SCCPs[11 − 13],而禽类则优先富集碳链相对较长的LCCPs[14 − 16],表明CPs在禽体内的富集方向不同于其他动物. CPs在动物体内代谢能力的强弱是影响其生物富集差异性的重要因素,生物富集是CPs生态/健康风险评估的重要因素. 早期Nilsen等[17]将大鼠通过腹腔注射的方式暴露SCCPs和LCCPs,然后通过测定肝脏增重以及P450酶浓度增加程度来判别二者在大鼠体内代谢能力的大小;随后,Brunström等[18]将CPs注入鸡蛋的蛋黄,再将鸡蛋孵化20 d,然后采用类似的方法研究了鸡胚胎对SCCPs和LCCPs代谢能力的大小. 然而,以上方法相对较复杂. 肝微粒体离体代谢目标化合物是模拟其在动物体内代谢的重要手段. 由于CPs的组成较为复杂,且它们属于高度脂溶性化合物,肝微粒体对其代谢能力有限,采用肝微粒体直接离体代谢底物时,几乎无法观察到底物的消耗,故在动物肝微粒体离体代谢CPs实验中很少报道其代谢清除率[19].
考虑到血清蛋白在生物体内可作为外源性物质转运的载体,本研究采用胎牛血清作为CPs的载体,一方面,可使得高度疏水的CPs与血清有效结合,促进CPs与肝微粒体蛋白酶反应;另一方面,可有效避免溶解底物的乙腈溶剂对代谢酶的毒性作用,从而建立一种高效的鸡肝微粒体离体代谢CPs方法. 通过分析底物浓度、CPs碳链长度以及氯原子数对CPs代谢清除率的影响,研究不同碳链长度CPs同系物在鸡体内代谢清除规律.
基于血清促进的鸡肝微粒体离体代谢氯化石蜡方法及其清除规律
A method and clearance pattern for in vitro metabolism of chlorinated paraffin in chicken liver microsomes based on serum promotion
-
摘要: 研究氯化石蜡(CPs)在动物体内代谢清除规律是探讨其生物富集机制的重要依据. 肝微粒体离体代谢目标化合物是模拟其在动物体内代谢的重要手段. 通过优化鸡肝微粒体离体代谢CPs实验方法,采用血清作为添加剂,建立一种高效的鸡肝微粒体离体代谢CPs方法. 该方法使得溶解底物的有机溶剂体积高达反应总体积的3%,血清加入量为底物溶液体积的1—10倍;反应终止后,无需提取步骤,方法简洁,实现样品的快速处理. 方法成功应用于鸡肝微粒体离体代谢CPs清除规律的研究. 研究显示,在无血清条件下,鸡肝微粒体孵育底物(0.2 μg·mL−1)90 min时,短链氯化石蜡(SCCPs)分子式同系物的代谢清除率均低于20%;然而,加入少量胎牛血清作为底物的载体后,相同孵育时间内,SCCPs分子式同系物的代谢清除率得到显著提高,C11Cl6-8的代谢清除率甚至超过80%;鸡肝微粒体对CPs的代谢清除率,随着底物浓度、CPs碳链长度以及氯原子数的增加而降低. 本研究为动物肝微粒体离体代谢CPs研究提供一种高效的方法,同时也为其他疏水性毒害有机物的肝微粒体离体代谢研究提供一种新的方法参考.Abstract: It is an important basis for exploring their bioaccumulation mechanisms to study the metabolic clearance patterns of chlorinated paraffins (CPs) in animals. In vitro metabolism of target compounds by liver microsomes is an important means to simulate its metabolism in animals. By optimizing the method of CPs metabolism by chicken liver microsome in vitro, using serum as an additive agent, a high efficient method of CPs metabolism by chicken liver microsome in vitro was established. In this method, the volume of organic solvent dissolving the substrate could be as high as 3% of the total reaction volume, and the amount of serum added was one to ten times of the volume of substrate solution. After the termination of the reaction, there was no need to extract steps, and the method was simple, so that the rapid processing of samples was realized. The method was successfully applied to the study of CPs clearance by chicken liver microsomes in vitro. The results showed that under serum-free conditions, the metabolic clearance rates of all short chain chlorinated paraffins (SCCPs) with molecular formula homologues were lower than 20% when chicken liver microsomes were incubated with substrates for 90 min. However, after adding a small amount of serum as the carrier of substrate, the metabolic clearance ratio of SCCPs molecular formula homologues was significantly improved within the same incubation time, and the metabolic clearance ratio of C11Cl6-8 was even more than 80%. This is the first time to reveal the metabolic clearance of CPs by liver microsomes in vitro: The metabolic clearance of CPs by chicken liver microsomes decreased with the increase of substrate concentration, CPs carbon chain length and their number of chlorine atoms. This study will provide an efficient method for the study of CPs metabolism by animal liver microsomes in vitro. Meanwhile, it will also provides a new method reference for the study of liver microsome metabolism of other hydrophobic compounds in vitro.
-
Key words:
- serum /
- chlorinated paraffins /
- liver microsomes /
- metabolic clearance ratio
-
图 1 鸡肝微粒体对SCCPs同系物的代谢清除率(SCCPs反应总浓度为0.2 μg·mL−1,反应时间90 min;0、1、10分别代表血清加入量为底物溶液体积的0倍、1倍和10倍)
Figure 1. The metabolic clearance ratio of SCCPs homologues by chicken liver microsomes (the total concentration of SCCPs in the final reaction was 0.2 μg·mL−1, and the reaction time was 90 min; 0, 1, and 10 represent serum addition amounts equal to 0, 1, and 10 times the volume of the substrate solution, respectively).
图 3 CPs在反应体系中总浓度分别为0.2、0.5、1 μg·mL−1时,不同氯原子数的C12-、C14-、C18-CPs同系物的鸡肝微粒体代谢清除率(反应时间60 min)
Figure 3. When the total concentration of CPs in the reaction system was 0.2, 0.5 and 1.0 μg·mL−1, respectively, metabolic clearance ratio of C12-、C14-、C18-CPs with different chlorine atom number by chicken liver microsomes ( the reaction time was 60 min)
-
[1] MU Y W, CHENG D, ZHANG C L, et al. The potential health risks of short-chain chlorinated paraffin: A mini-review from a toxicological perspective[J]. Science of the Total Environment, 2023, 872: 162187. doi: 10.1016/j.scitotenv.2023.162187 [2] HUANG J W, BAI Y Y, ZEESHAN M, et al. Effects of exposure to chlorinated paraffins on human health: A scoping review[J]. Science of the Total Environment, 2023, 886: 163953. doi: 10.1016/j.scitotenv.2023.163953 [3] CUI L L, GAO L R, ZHENG M H, et al. Short- and medium-chain chlorinated paraffins in foods from the sixth Chinese total diet study: Occurrences and estimates of dietary intakes in South China[J]. Journal of Agricultural and Food Chemistry, 2020, 68(34): 9043-9051. doi: 10.1021/acs.jafc.0c03491 [4] LIU Y, WANG S, GAO L R, et al. Exposure to chlorinated paraffins in the sixth total diet study - China, 2016-2019[J]. China CDC Weekly, 2022, 4(9): 172-175. doi: 10.46234/ccdcw2022.043 [5] POPRC. Risk Profile Document UNEP/POPS/POPRC. 12/11/Add. 3. Risk management evaluation on short-chain chlorinated paraffins[R]. 2016: United Nations Environmental Programme Stockholm Convention on Persistent Organic Pollutants, Geneva. [6] UNEP. Proposal to list chlorinated paraffins with carbon chain lengths in the range C14-17 and chlorination levels at or exceeding 45 per cent chlorine by weight in Annexes A, B and/or C to the Stockholm Convention on Persistent Organic Pollutants[R]. 2021: UNEP/POPS/POPRC. 17/6. [7] POPRC. Report of the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants on the work of its eighth meeting[R]. 2017: UNEP/POPS/COP. 8/32. [8] UNEP. Candidate POPs Chlorinated paraffins with carbon chain lengths in the range C14-17 and chlorination levels at or exceeding 45 per cent chlorine by weight[EB]. 2022: [9] USEPA. TSCA new chemicals review program standard review risk assessment on medium-chain chlorinated paraffins (PMN P-12-0282, P-12-0283) and Long-Chain Chlorinated Paraffins (PMN P-12-0284)[R]. 2015: [10] YUAN B, BRÜCHERT V, SOBEK A, et al. Temporal trends of C8-C36 chlorinated paraffins in Swedish coastal sediment cores over the past 80 years[J]. Environmental Science & Technology, 2017, 51(24): 14199-14208. [11] WANG R H, GAO L R, ZHENG M H, et al. Short- and medium-chain chlorinated paraffins in aquatic foods from 18 Chinese Provinces: Occurrence, spatial distributions, and risk assessment[J]. Science of the Total Environment, 2018, 615: 1199-1206. doi: 10.1016/j.scitotenv.2017.09.327 [12] HUANG H T, GAO L R, ZHENG M H, et al. Dietary exposure to short- and medium-chain chlorinated paraffins in meat and meat products from 20 provinces of China[J]. Environmental Pollution, 2018, 233: 439-445. doi: 10.1016/j.envpol.2017.10.022 [13] DONG S J, ZHANG S, LI X M, et al. Occurrence of short- and medium-chain chlorinated paraffins in raw dairy cow milk from five Chinese Provinces[J]. Environment International, 2020, 136: 105466. doi: 10.1016/j.envint.2020.105466 [14] YUAN B, VORKAMP K, ROOS A M, et al. Accumulation of short-, medium-, and long-chain chlorinated paraffins in marine and terrestrial animals from Scandinavia[J]. Environmental Science & Technology, 2019, 53(7): 3526-3537. [15] HUANG X M, DING C H, SU Q Q, et al. A simplified method for determination of short-, medium-, and long-chain chlorinated paraffins using tetramethyl ammonium chloride as mobile phase modifier[J]. Journal of Chromatography. A, 2021, 1642: 462002. doi: 10.1016/j.chroma.2021.462002 [16] MÉZIÈRE M, MARCHAND P, HUTINET S, et al. Transfer of short-, medium-, and long-chain chlorinated paraffins to eggs of laying hens after dietary exposure[J]. Food Chemistry, 2021, 343: 128491. doi: 10.1016/j.foodchem.2020.128491 [17] NILSEN O G, TOFTGÅRD R, GLAUMANN H. Effects of chlorinated paraffins on rat liver microsomal activities and morphology[J]. Archives of Toxicology, 1981, 49(1): 1-13. doi: 10.1007/BF00352066 [18] BRUNSTRÖM B. Effects of chlorinated paraffins on liver weight, cytochrome P-450 concentration and microsomal enzyme activities in chick embryos[J]. Archives of Toxicology, 1985, 57(1): 69-71. doi: 10.1007/BF00286579 [19] LIN L, ABDALLAH M A E, CHEN L J, et al. Comparative in vitro metabolism of short chain chlorinated paraffins (SCCPs) by human and chicken liver microsomes: First insight into heptachlorodecanes[J]. Science of the Total Environment, 2022, 851(Part 2): 158261. [20] ZHENG X B, ERRATICO C, ABDALLAH M A E, et al. In vitro metabolism of BDE-47, BDE-99, and α-, β-, γ-HBCD isomers by chicken liver microsomes[J]. Environmental Research, 2015, 143(Part A): 221-228. [21] YU X, McPHEDRAN K N, HUANG R F. Chlorinated paraffins: A review of sample preparation, instrumental analysis, and occurrence and distribution in food samples[J]. Environmental Pollution, 2023, 318: 120875. doi: 10.1016/j.envpol.2022.120875 [22] ERRATICO C, ZHENG X B, van den EEDE N, et al. Stereoselective metabolism of α-, β-, and γ-hexabromocyclododecanes (HBCDs) by human liver microsomes and CYP3A4[J]. Environmental Science & Technology, 2016, 50(15): 8263-8273. [23] WARNER N A, MARTIN J W, WONG C S. Chiral polychlorinated biphenyls are biotransformed enantioselectively by mammalian cytochrome P-450 isozymes to form hydroxylated metabolites[J]. Environmental Science & Technology, 2009, 43(1): 114-121. [24] SHIMADA T, SATO R. Covalent binding of polychlorinated biphenyls to rat liver microsomes in vitro: Nature of reactive metabolites and target macromolecules[J]. Toxicology and Applied Pharmacology, 1980, 55(3): 490-500. doi: 10.1016/0041-008X(80)90051-4