-
镉(Cd)可通过食物链逐层积累,对生态环境和生物生命健康存在威胁[1]. 据2021年生态环境部发布简况,影响农用地土壤环境质量的主要污染物是重金属,其中镉为首要污染物. 烟草极易吸收Cd[2],Cd胁迫对烟草整个生长周期和生理指标均产生影响,严重降低烟叶口感和产量,且Cd通过烟气进入人体,威胁人体健康[3],因此如何降低烟草吸收Cd是烟草行业亟需解决的问题. 阻控烟草吸收Cd已有不少研究,如李晓锋等[4]发现, 生物有机类钝化剂提高烟草生物量且降低Cd吸收最显著;杜甫等[5]利用新型丙烯酰胺/羧甲基纤维素/生物炭复合水凝胶,提高了烟草在Cd胁迫下的耐受性;吕怡颖等[6]发现镉浓度50—200 μmol·L−1对烟苗生长发育具有显著抑制作用,外源褪黑素(一种小分子吲哚胺类)可显著缓解烟草镉毒害. 但相关研究尚未得到广泛应用,有可能是成本较高或对土壤存在二次污染[7];与此同时,土壤微生物阻控植物吸收重金属已卓有成效[8].
本研究以曾应用于氨基酸、有机酸发酵工业的石蜡(食品级,碳原子13—18)[9]作为土壤微生物生长碳源,以期在氨基酸废母液粉作为氮肥的基础上,通过配施石蜡,促进石蜡降解菌群增加,全面提高土壤微生物种群数量,利用土壤微生物对镉离子的络合、螯合、沉淀等作用[10],降低Cd的迁移能力和有效态Cd含量,从而减少烟草对镉的吸收,为轻度镉污染土壤种植合格烟叶提供新的栽培技术.
石蜡与氨基酸废母液粉配施对烟草重金属Cd吸附的阻控效应
Blocking effect of paraffin wax and amino acid waste mother liquor powder on the adsorption heavy metal Cd of tobacco
-
摘要: 烟草是强富集镉(Cd)的重要经济作物. 为降低烟草对Cd的吸收,以矿区污染土壤(Cd含量为0.678 mg·kg−1)为种植基质,烟草专用肥(硝态氮)为对照,氨基酸母液粉为新型氮肥(氨基氮),并分别配施作为土壤微生物碳源的食品级石蜡,以期促进土壤微生物种群与数量的持续增加(石蜡降解速度缓慢),通过微生物的生化调控达到降低土壤有效态Cd含量,从而减少烟叶对镉的吸收. 结果表明:(1)石蜡和氨基酸废母液粉配施(T4处理)显著(P<0.05)提高土壤微生物丰富度,ACE指数达到4464.47,Chao1指数达到3888.30,氨基酸废母液粉(T3处理)土壤微生物多样性最好,Shannon指数达到6.4066;(2)施加氨基酸废母液粉(T3、T4处理)可显著(P<0.05)提高土壤pH值,3个时期(烟叶旺长期、打顶期、成熟期)最大提高量分别为0.23、0.49和0.35;(3)石蜡和氨基酸废母液粉显著(P<0.05)降低土壤有效态Cd含量,3个时期较烟草专用肥组(T1处理)分别降低了14.8%—20.7%、18.6%—34.5%、20.5%—36.7%;(4)石蜡和氨基酸废母液粉显著(P<0.05)降低烟叶Cd含量,3个时期较烟草专用肥(T1处理)分别降低了0.6%—10.2%、8.2%—26.2%、13.8%—38.9%. 因此,石蜡和氨基酸废母液粉配施能够有效提高土壤微生物丰富度和多样性,降低土壤有效态Cd含量,减少烟草对Cd的吸收.Abstract: Tobacco is an important cash crop with strong enrichment of cadmium (Cd). In order to reduce the absorption of Cd by tobacco, the contaminated soil in mining area (Cd content is 0.678 mg·kg−1) is used as planting substrate. In this experiment, tobacco special fertilizer (nitrate nitrogen) was used as control, the amino acid waste mother liquor powder was a new nitrogen fertilizer (amino acid nitrogen), and paraffin wax (food-grade) as soil microbial carbon source was applied separately. The purpose is to promote the continuous increase of soil microbial population and quantity (the degradation rate of paraffin wax is slow.), and reduce the soil available Cd content through biochemical regulation of microorganisms, thereby reducing the absorption of Cd by tobacco leaves. The results showed that: (1) Paraffin wax and amino acid waste mother liquor powder (T4 treatment) significantly (P<0.05) increased the soil microbial richness, the ACE reached 4464.47, the chao1 reached 3888.30, the amino acid waste mother liquor powder (T3 treatment) soil microbial Shannon diversity was the best, and the Shannon reached 6.4066; (2) the application of amino acid waste mother liquor powder (T3, T4 treatment) could significantly increase soil pH (P<0.05), and the maximum increases in the three periods were 0.23、0.49 and 0.35 units. (3) Paraffin wax and amino acid waste mother liquor powder significantly (P<0.05) reduced the soil effective Cd content, which was reduced by 14.8%—20.7%, 18.6%—34.5% and 20.5%—36.7%compared with the tobacco special fertilizer group (T1 treatment) in the three periods. (4) Paraffin wax and amino acid waste mother liquor powder significantly (P<0.05) reduced the Cd content of tobacco leaves, and decreased by 0.6%—10.2%, 8.2%—26.2% and 13.8%—38.9% compared with tobacco special fertilizer (T1 treatment) in the three periods. Therefore, the combination of paraffin wax and amino acid waste mother liquor powder can effectively improve the richness and diversity of soil microorganisms and reduce the soil effective Cd content. Finally, the absorption of Cd by tobacco is reduced.
-
Key words:
- paraffin wax /
- amino acid waste mother liquor powder /
- soil microorganisms /
- tobacco /
- cadmium.
-
表 1 具体施肥方案
Table 1. The specific fertilization scheme
处理
Treatment烟草专用肥
Tobacco special fertilizer氨基酸废母液粉
Amino acid mother liquor powder石蜡
Paraffin waxT1 406.2 kg·hm−2 — — T2 406.2 kg·hm−2 — 300 kg·hm−2 T3 — 696.45 kg·hm−2 — T4 — 696.45 kg·hm−2 300 kg·hm−2 表 2 土壤微生物实时定量 PCR 分析基因及引物
Table 2. Real-time quantitative PCR analysis of genes and primers by soil microorganisms
区域
Region引物名称
Primer name引物序列(5’-3’)
Primer sequences (5'-3')V3+V4 341F CCTAYGGGRBGCASCAG 806R GGACTACNNGGGTATCTAAT 表 3 不同处理根际土壤微生物α多样性指数
Table 3. α Diversity index of soil microorganisms with different treatments
处理
TreatmentSobs α多样性指数
α diversity index覆盖率
CoverageShannon Simpson ACE Chao1 T1 2643.00b 6.3583a 0.0098a 3851.65b 3571.71a 0.9548 T2 2714.33b 6.3359a 0.0099a 3864.72b 3638.19a 0.9551 T3 2891.33a 6.4066a 0.0086b 4118.76b 3787.24a 0.9597 T4 2914.00a 6.3752a 0.0092ab 4464.47a 3888.30a 0.9515 注:同列不同小写字母表示组间差异达显著水平(P<0.05)水平.
Note: Different lowercase letters in the same column indicate a significant difference between groups (P<0.05) level. -
[1] 陈世宝, 王萌, 李杉杉, 等. 中国农田土壤重金属污染防治现状与问题思考[J]. 地学前缘, 2019, 26(6): 35-41. CHEN S B, WANG M, LI S S, et al. Current status of and discussion on farmland heavy metal pollution prevention in China[J]. Earth Science Frontiers, 2019, 26(6): 35-41 (in Chinese).
[2] 杨佳蒴. 氯化钠诱导根系木质化对烟草镉吸收的影响[D]. 北京: 中国农业科学院, 2020. YANG J S. Effects of the sodium chloride induced root lignification on cadmium accumulation by tobacco[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020 (in Chinese).
[3] SIEMIANOWSKI O, BARABASZ A, KENDZIOREK M, et al. HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier[J]. Journal of Experimental Botany, 2014, 65(4): 1125-1139. doi: 10.1093/jxb/ert471 [4] 李晓锋, 吴锋颖, 剧永望, 等. 石灰、羟基磷灰石、秸秆生物炭对烟草吸收镉的影响[J]. 生态毒理学报, 2022, 17(1): 381-394. LI X F, WU F Y, JU Y W, et al. Effects of lime, hydroxyapatite and straw biochar on cadmium accumulation in tobacco[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 381-394 (in Chinese).
[5] 杜甫, 夏茂林, 刘新源, 等. 丙烯酰胺/羧甲基纤维素/生物炭复合水凝胶对烟苗镉胁迫的缓解效应研究[J]. 作物杂志, 2022(4): 138-145. DU F, XIA M L, LIU X Y, et al. Effective effects of acrylamide/carboxymethyl cellulose/biochar composite hydrogel on cadmium stress in tobacco seedlings[J]. Crops, 2022(4): 138-145 (in Chinese).
[6] 吕怡颖, 郑元仙, 王继明, 等. 外源褪黑素对镉胁迫烟草幼苗的缓解效应[J]. 中国烟草科学, 2023, 44(4): 25-32. LÜ Y Y, ZHENG Y X, WANG J M, et al. Alleviative effect of exogenous melatonin on cadmium stress in tobacco seedlings[J]. Chinese Tobacco Science, 2023, 44(4): 25-32 (in Chinese).
[7] 李林, 艾雯妍, 文思颖, 等. 微生物吸附去除重金属效率与应用研究综述[J]. 生态毒理学报, 2022, 17(4): 503-522. LI L, AI W Y, WEN S Y, et al. Efficiency and application of microbial-sorption removal of heavy metals: A review[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 503-522 (in Chinese).
[8] OJUEDERIE O B, BABALOLA O O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review[J]. International Journal of Environmental Research and Public Health, 2017, 14(12): 1504. doi: 10.3390/ijerph14121504 [9] 姚汝华. 微生物工程工艺原理[M]. 广州: 华南理工大学出版社, 1996. YAO R H. Process principle of microbial engineering[M]. Guangzhou: South China University of Technology Press, 1996(in Chinese).
[10] ABDU N, ABDULLAHI A A, ABDULKADIR A. Heavy metals and soil microbes[J]. Environmental Chemistry Letters, 2017, 15(1): 65-84. doi: 10.1007/s10311-016-0587-x [11] 中华人民共和国农业部. 土壤检测 第1部分: 土壤样品的采集、处理和贮存: NY/T 1121.1—2006[S]. 北京: 中国农业出版社, 2006. Ministry of Agriculture of the People’s Republic of China. Soil Testing Part 1: Soil sampling processing and reposition: NY/T 1121.1—2006[S]. Beijing: China Agriculture Press, 2006(in Chinese).
[12] EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200. doi: 10.1093/bioinformatics/btr381 [13] KEMP P F, ALLER J Y. Bacterial diversity in aquatic and other environments: What 16S rDNA libraries can tell us[J]. FEMS Microbiology Ecology, 2004, 47(2): 161-177. doi: 10.1016/S0168-6496(03)00257-5 [14] 中华人民共和国农业部. 土壤检测标准第2部分: 土壤 pH 的测定: NY/T 1121.2-2006[S]. 北京: 中国农业出版社, 2006. Ministry of Agriculture of the People’s Republic of China. Soil Testing Part 2: Method for determination of soil pH: NY/T 1121.1—2006[S]. Beijing: China Agriculture Press, 2006(in Chinese).
[15] 国家质量监督检验检疫总局、中国国家标准化管理委员会. 土壤质量 有效态铅和镉的测定 原子吸收法: GB/T 23739—2009[S]. 北京: 中国标准出版社, 2009. Standardization Administration of the People's Republic of China. Soil quality - Analysis of available lead and cadmium contents in soils - Atomic absorption spectrometry: GB/T 23739—2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
[16] 国家环境保护总局. 土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法: GB/T 17141—1997[S]. 北京: 中国标准出版社, 1997. State Environmental Protection Administration of the People's Republic of China. Soil quality-Determination of lead, cadmium-Graphite furnace atomic absorption spectrophotometry: GB/T 17141—1997[S]. Beijing: Standards Press of China, 1997(in Chinese).
[17] 张慧, 余端, 杭晓宁, 等. 稻菜轮作下不同施氮处理对土壤微生物多样性的影响[J]. 西南农业学报, 2023, 36(3): 550-556. ZHANG H, YU D, HANG X N, et al. Effects of different nitrogen treatments on soil microbial diversity under rice-vegetable rotation[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(3): 550-556 (in Chinese).
[18] 蓝贤瑾, 刘益仁, 侯红乾, 等. 长期有机无机肥配施对红壤性水稻土微生物生物量和有机质结构的影响[J]. 农业资源与环境学报, 2021, 38(5): 810-819. LAN X J, LIU Y R, HOU H Q, et al. Effect of long-term organic manure application combined with chemical fertilizers on soil microbial biomass and organic matter structure in red paddy[J]. Journal of Agricultural Resources and Environment, 2021, 38(5): 810-819 (in Chinese).
[19] 万连杰, 何满, 田洋, 等. 有机肥替代化肥比例对椪柑生长发育、产量和土壤生物学特性的影响[J]. 植物营养与肥料学报, 2022, 28(4): 675-687. WAN L J, HE M, TIAN Y, et al. Effects of partial substitution of chemical fertilizer with organic fertilizer on Ponkan growth and yield and soil biological properties[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 675-687 (in Chinese).
[20] 李娟, CONSTANTINE U, 冷艳, 等. 节杆菌属细菌处理有机物和重金属污染物的研究进展[J]. 环境科学与技术, 2017, 40(10): 89-97. LI J, CONSTANTINE U, LENG Y, et al. Progress on the study of biodegradation of organic pollutants and adsorption of heavy metals with Arthrobacter strains[J]. Environmental Science & Technology, 2017, 40(10): 89-97 (in Chinese).
[21] XU S Z, XING Y H, LIU S, et al. Co-effect of minerals and Cd(II) promoted the formation of bacterial biofilm and consequently enhanced the sorption of Cd(II)[J]. Environmental Pollution, 2020, 258: 113774. doi: 10.1016/j.envpol.2019.113774 [22] LAORRATTANASAK S, RONGSAYAMANONT W, KHONDEE N, et al. Production and application of Gordonia westfalica GY40 biosurfactant for remediation of fuel oil spill[J]. Water, Air, & Soil Pollution, 2016, 227(9): 325. [23] 王瑾, 王永刚, 朵建文, 等. 重金属污染物的微生物修复策略[J]. 安徽农业科学, 2023, 51(18): 24-28. WANG J, WANG Y G, DUO J W, et al. Microbial remediation strategies for heavy metal contaminants[J]. Journal of Anhui Agricultural Sciences, 2023, 51(18): 24-28 (in Chinese).
[24] 陈楠. 土壤pH对镉在土壤—水稻系统中的迁移、积累与分布的影响[D]. 长沙: 湖南农业大学, 2018. CHEN N. Effect of soil pH on accumulation and distribution of cadmium in soil-rice system[D]. Changsha: Hunan Agricultural University, 2018 (in Chinese).
[25] WANG J, WANG P M, GU Y, et al. Iron-manganese (oxyhydro)oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environmental Science & Technology, 2019, 53(5): 2500-2508. [26] 龚玲婷. 矿物质调理剂对土壤磷素的固持作用及植物营养吸收的影响研究[D]. 广州: 华南理工大学, 2018. GONG L T. Study on the effects of mineral conditioner on soil phosphorus retention and plant nutrient uptake[D]. Guangzhou: South China University of Technology, 2018 (in Chinese).
[27] 李晓忠, 汤若云, 杨虹琦, 等. 外源铅镉在不同类型土壤中的转化形态及在烟株中分布研究[J]. 现代农业科技, 2015(3): 197-198,212. LI X Z, TANG R Y, YANG H Q, et al. Study on transforming morphology and distribution of exogenous Pb and Cd in different types of soil and tobacco plants[J]. Modern Agricultural Science and Technology, 2015(3): 197-198,212 (in Chinese).