-
土壤是人类活动产生的各种污染物的重要接收者,被认为是地球上最大的重金属汇. 伴随工业化发展,各种污染物不可避免的被引入到环境介质中. 研究表明,工业排放是城市土壤中重金属的主要来源之一[1],而电镀行业因其工艺流程会产生大量高浓度重金属废水和废渣,更是重金属排放大户,若未经妥善处理极易释放到环境中,造成环境污染. 随着城市化进程加快,大量电镀厂被废弃,但其造成的土壤中重金属的累积是短时间内难以消除的[2],残留在土壤中的重金属不仅对植物、土壤动物和微生物构成严重威胁,还可通过食物链对周围居民造成潜在高风险[3 − 6]. 此外,由于污染物的长期向环境土壤中输入以及在降水等作用下的淋溶迁移[7],表层土壤累积的重金属会向下迁移运输,严重时可造成地下水的污染,危害人体健康[8 − 11]. 因此,了解土壤环境中重金属的迁移和转化对于实施相关风险控制策略至关重要.
目前国内外开展的土壤重金属污染的研究多关注于表层土壤[12 − 14],然而,从地表包气带土壤到饱水带及地下水是有密切物质联系的完整系统,想要全面诠释重金属在土壤中的分布特征及运输迁移途径,将土壤(包气带至饱水带)-地下水进行综合考虑是十分重要的. 此外,重金属在土壤中的赋存形态很大程度上决定了其土壤中的释放和迁移转化过程[15 − 17],因而对元素赋存状态的分析有助于表征其在土壤中的迁移特征. 目前对电镀污染场地土壤中重金属的相关研究主要关注于分布特征、污染风险评价和来源解析,对其迁移规律研究较少.
本研究选择上海市某废弃电镀厂作为研究对象,对其场地内包气带-饱水带土壤和地下水样品中重金属含量进行测定,综合重金属污染特征,探究重金属的垂向空间分布及迁移特征. 通过对电镀场地土壤重金属污染特征和迁移规律的了解,对于制定科学的环境管理和污染治理策略具有一定支撑作用.
典型电镀场地重金属污染及迁移特征
Contamination and migration characteristics of heavy metals at a typical electroplating site
-
摘要: 重金属污染是电镀场地普遍现象,研究其土壤地下水中重金属污染特征和迁移影响因素,对后续环境管理和修复策略的选择具有重要意义. 本文以上海市某废弃电镀厂作为研究对象,选择污染较为严重的5个区域及1个对照点,采集70个土壤样品和6个地下水样品,测定分析不同深度土壤和地下水中重金属(Hg、Pb、Cd、Cr和As)空间分布特征,结合土壤质地探讨了重金属的迁移影响因素. 结果表明,该场地土壤已受到不同程度的重金属污染,Hg、Pb、Cr和Cd的垂向分布均呈现随土壤深度增加而下降趋势,到一定深度时含量达到平稳状态,整体上包气带土壤重金属污染程度远高于饱水带,但是As无明显增减趋势. 相关性分析结果表明,土壤粒径是影响重金属垂向迁移的重要因素. 根据迁移系数的计算结果,饱水带土壤中Cr的迁移能力相较于包气带更强,说明饱水带中Cr的污染不容忽视. 土壤高含量的Cr已造成地下水Cr的严重污染. 土壤重金属含量、颗粒组成和水位埋深是影响地下水重金属含量的重要因素.Abstract: Heavy metal contamination is a common issue at electroplating sites. It is important to investigate the characteristics and migration of heavy metals in the soil and groundwater for subsequent environmental management and remediation strategies. In this study, a defunct electroplating factory in Shanghai was selected as the research site. A total of 70 soil samples and 6 groundwater samples were collected from five heavily contaminated sites and one control point. The spatial distribution characteristics of heavy metals (Hg, Pb, Cd, Cr, and As) in soil at different depths and groundwater were determined and analyzed, and the influencing factors of heavy metals migration were explored in combination with soil texture. The results showed that the soil at the electroplating plant had been contaminated to varying degrees with heavy metals. The vertical distribution of Hg, Pb, Cr, and Cd in the soil exhibits a decreasing trend with increasing soil profile depth, reaching a stable state at a certain depth. Overall, the levels of heavy metal contamination were much higher in the vadose zone soil than in the saturated zone soil. While, there is no significant trend for As to increase or decrease as the soil profile depth increases. Correlation analysis results indicate that soil particle size is a critical factor affecting the vertical migration of heavy metals. Based on the calculation of migration coefficients, it is evident that the migration capacity of Cr in the saturated zone soil is stronger than in the vadose zone, indicating that the contamination of Cr in the saturated zone should not be underestimated. High levels of Cr in the soil have caused significant contamination of groundwater with Cr. Soil heavy metal content, soil particle composition and groundwater burial depth are important factors that affect the amount of heavy metal in groundwater.
-
Key words:
- electroplating site /
- heavy metal contamination /
- soil /
- migration
-
表 1 不同采样点剖面土壤pH分布特征
Table 1. pH values of soils
采样点
Sampling siteS1 S2 S3 S4 S5 最小值 3.80 7.40 8.26 7.68 7.68 最大值 8.61 8.91 9.08 8.79 8.48 平均值 6.64 8.12 8.59 8.36 8.19 表 2 研究区域土壤剖面重金属含量
Table 2. Statistical table of heavy metal contents in soil
元素
ElementAs/(mg·kg−1) Hg/(mg·kg−1) Pb/(mg·kg−1) Cr/(mg·kg−1) Cd/(mg·kg−1) 最大值 35.81 6.58 5831 49020 3.04 最小值 4.81 0.03 5.41 18.05 0.04 平均值 13.17 0.64 341.34 6934.68 0.33 中位值 10.87 0.24 28.25 1119.00 0.12 标准差 6.76 1.10 829.26 11983.08 0.53 变异系数/% 51.33 172.34 242.94 172.80 159.42 对照点平均值 8.19 0.05 19.08 50.25 0.06 第二类用地筛选值 60 38 800 — 65 表 3 采样点位包气带和饱水带重金属含量
Table 3. Statistical table of heavy metal contents at each sampling site
采样点
Sampling siteAs/(mg·kg−1) Hg/(mg·kg−1) Pb/(mg·kg−1) Cr/(mg·kg−1) Cd/(mg·kg−1) S1 最大值 19.41 1.33 5831.00 49020.00 0.87 最小值 8.67 0.06 9.89 1095.00 0.05 平均值 12.13 0.39 735.53 21460.47 0.21 平均值a 15.61 0.51 2289.36 30638.00 0.54 平均值b 11.26 0.36 347.07 19166.08 0.13 变异系数 0.30 0.96 2.09 0.79 1.06 S2 最大值 18.56 3.66 86.00 932.60 3.04 最小值 4.81 0.03 5.41 18.05 0.06 平均值 10.59 0.46 23.40 152.08 0.67 平均值a 15.11 1.35 44.06 337.71 1.31 平均值b 8.95 0.13 15.89 84.58 0.44 变异系数 0.37 2.00 0.88 1.52 1.46 S3 最大值 35.46 1.68 935.46 5719.00 0.86 最小值 9.16 0.09 32.44 512.10 0.07 平均值 18.75 1.00 440.56 2112.75 0.45 平均值a 24.32 0.73 675.69 2913.80 0.66 平均值b 9.47 1.46 48.67 777.67 0.10 变异系数 0.50 0.60 0.85 0.81 0.68 S4 最大值 35.81 0.82 1272.30 7611.00 0.37 最小值 8.25 0.05 11.78 308.10 0.07 平均值 19.09 0.32 398.65 2450.90 0.20 平均值a 27.94 0.55 774.99 4476.60 0.32 平均值b 10.24 0.08 22.31 425.20 0.09 变异系数 0.54 0.96 1.41 1.04 0.63 S5 最大值 16.12 6.58 1924.97 27050.00 0.67 最小值 7.61 0.03 6.92 346.40 0.04 平均值 11.18 1.20 237.63 6096.47 0.19 平均值a 13.89 3.24 675.03 14860.40 0.45 平均值b 9.83 0.19 18.93 1714.50 0.07 变异系数 0.22 1.61 2.10 1.25 1.13 平均值a:包气带中重金属含量平均值,平均值b:饱水带中重金属含量平均值.
meana: the average content of heavy metals in the vadose zone; meanb: the average content of heavy metals in the saturated zone.表 4 研究区域土壤剖面中重金属与土壤性质之间的相关性
Table 4. Correlation between heavy metals and soil properties of the soil profile in the study area
As Hg Pb Cr Cd pH 黏粒
Clay砂粒
Sand(粉)砂粒
Silt含水率
Soil moisture采样深度
DepthAs 1 Hg 0.18 1.00 Pb 0.41** 0.05 1.00 Cr 0.15 0.14 0.46** 1.00 Cd 0.20 0.09 0.17 −0.02 1.00 pH 0.08 0.01 −0.05 −0.59** −0.20 1.00 黏粒 −0.58** −0.35** −0.42** −0.54** −0.10 0.14 1.00 砂粒 0.67** 0.33** 0.52** 0.528** 0.16 −0.06 −0.87** 1.00 粉砂粒 −0.63** −0.27* −0.50** −0.43** −0.17 −0.02 0.63** −0.93** 1.00 含水率 −0.53* −0.06 −0.52* −0.39 −0.38 −0.09 0.46* −0.67** 0.68** 1.00 采样深度 −0.61** −0.41** −0.42** −0.29* −0.40** −0.03 0.55** −0.70** 0.70** 0.68** 1.00 注:* 表示 P<0. 05;** 表示 P<0. 01. Note: * indicate P<0. 05 and ** indicate P<0. 01. 表 5 包气带土壤Cr形态相关性分析
Table 5. Correlation analysis of Cr occurrence forms and soil properties in vadose zone
pH 黏粒
Clay砂粒
Sand粉砂粒
Silt迁移系数
MF可还原态
Reucibled可氧化态
Oxidisable残渣态
Residual含水率
Soil moisturepH 1 黏粒 −0.56 1 砂粒 0.15 −0.90* 1 粉砂粒 0.05 0.6 −0.7 1 迁移系数 0.15 −0.90* 1.0** −0.7 1 可还原态 0.41 0.3 −0.6 0.5 −0.6 1 可氧化态 0.05 0.6 −0.7 1.0** −0.7 0.5 1 残渣态 −0.21 −0.1 0.2 −0.7 0.2 −0.6 −0.7 1 含水率 0.46 −0.4 0.3 0.2 0.3 −0.4 0.2 0 1 注:* 表示 P<0. 05;** 表示 P<0. 01. Note: * indicate P<0. 05; ** indicate P<0. 01. 表 6 地下水中重金属含量
Table 6. Heavy metal concentrations of groundwater in the study area
点位
Sampling sitepH EC/(μS·cm−1) As/(μg·L−1) Hg/(μg·L−1) Pb/(μg·L−1) Cr/(mg·L−1) Cd/(μg·L−1) Cr(Ⅵ) /(mg·L−1) S1 8.11 1415 0.30 1.3 <0.09 954.00 0.33 776.00 S2 7.58 845 2.10 <0.04 <0.09 12.30 3.82 11.10 S3 7.69 860 2.00 <0.04 <0.09 28.00 0.08 26.60 S4 7.90 707 1.70 <0.04 <0.09 29.10 <0.05 27.90 S5 7.05 912 1.65 <0.04 <0.09 15.2 <0.05 14.6 对照点 7.6 — 4.10 <0.04 <0.09 0.0003 <0.05 <0.004 GB/T 14848 IV — — 50.00 2.00 100.00 — 10.00 0.10 -
[1] 何博, 赵慧, 王铁宇, 等. 典型城市化区域土壤重金属污染的空间特征与风险评价[J]. 环境科学, 2019, 40(6): 2869-2876. doi: 10.13227/j.hjkx.201810057 HE B, ZHAO H, WANG T Y, et al. Spatial distribution and risk assessment of heavy metals in soils from a typical urbanized area[J]. Environmental Science, 2019, 40(6): 2869-2876 (in Chinese). doi: 10.13227/j.hjkx.201810057
[2] 耿治鹏, 宋颉, 王春林, 等. 污染场地土壤重金属污染空间特征分析—以某搬迁电镀厂为例[J]. 环境工程技术学报, 2023, 13(1): 295-302. doi: 10.12153/j.issn.1674-991X.20210617 GENG Z P, SONG J, WANG C L, et al. Spatial characteristics of soil heavy metal pollution in polluted sites: taking a relocated electroplating factory as an example[J]. Journal of Environmental Engineering Technology, 2023, 13(1): 295-302 (in Chinese). doi: 10.12153/j.issn.1674-991X.20210617
[3] SU W, LI X Y, ZHANG H S, et al. Migration and transformation of heavy metals in hyperaccumulators during the thermal treatment: a review[J]. Environmental Science and Pollution Research, 2021, 28(35): 47838-47855. doi: 10.1007/s11356-021-15346-8 [4] 杭小帅, 王火焰, 周健民. 电镀厂下游水体中重金属的分布特征及其风险评价[J]. 环境科学, 2008, 29(10): 2736-2742. doi: 10.3321/j.issn:0250-3301.2008.10.008 HANG X S, WANG H Y, ZHOU J M. Heavy metals distribution characteristics and risk assessment of water below an electroplating factory[J]. Environmental Science, 2008, 29(10): 2736-2742 (in Chinese). doi: 10.3321/j.issn:0250-3301.2008.10.008
[5] 余葱葱, 赵委托, 高小峰, 等. 电镀厂周边地表水中重金属分布特征及健康风险评价[J]. 环境科学, 2017, 38(3): 993-1001. YU C C, ZHAO W T, GAO X F, et al. Distribution characteristics and health risk assessment of heavy metals in surface water around electroplating factories[J]. Environmental Science, 2017, 38(3): 993-1001 (in Chinese).
[6] LI Y R, WANG Y N, LIU J, et al. A lifelong journey of lead in soil profiles at an abandoned e-waste recycling site: Past, present, and future[J]. Environmental Pollution, 2023, 320: 121097. doi: 10.1016/j.envpol.2023.121097 [7] LUO X S, XUE Y, WANG Y L, et al. Source identification and apportionment of heavy metals in urban soil profiles[J]. Chemosphere, 2015, 127: 152-157. doi: 10.1016/j.chemosphere.2015.01.048 [8] SHEN F, LIAO R M, ALI A, et al. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China[J]. Ecotoxicology and Environmental Safety, 2017, 139: 254-262. doi: 10.1016/j.ecoenv.2017.01.044 [9] 李沅蔚, 邹艳梅, 王传远. 黄河三角洲油田区土壤重金属的垂直分布规律及其影响因素[J]. 环境化学, 2019, 38(11): 2583-2593. doi: 10.7524/j.issn.0254-6108.2018122903 LI Y W, ZOU Y M, WANG C Y. Vertical distribution and influencing factors of heavy metals in oilfield soil in the Yellow River Delta[J]. Environmental Chemistry, 2019, 38(11): 2583-2593 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018122903
[10] 朱水, 申泽良, 王媛, 等. 垃圾处理园区周边土壤-地下水重金属分布特征[J]. 中国环境科学, 2021, 41(9): 4320-4332. doi: 10.3969/j.issn.1000-6923.2021.09.039 ZHU S, SHEN Z L, WANG Y, et al. Spatial distribution characteristics of heavy metals in the soil-groundwater system around an integrated waste management facility[J]. China Environmental Science, 2021, 41(9): 4320-4332 (in Chinese). doi: 10.3969/j.issn.1000-6923.2021.09.039
[11] 侯文隽, 龚星, 詹泽波, 等. 粤港澳大湾区丘陵地带某电镀场地重金属污染特征与迁移规律分析[J]. 环境科学, 2019, 40(12): 5604-5614. doi: 10.13227/j.hjkx.201906234 HOU W J, GONG X, ZHAN Z B, et al. Heavy metal contamination and migration in correspondence of an electroplating site on the hilly lands of the Guangdong-Hong Kong-Macau Greater Bay Area, China[J]. Environmental Science, 2019, 40(12): 5604-5614 (in Chinese). doi: 10.13227/j.hjkx.201906234
[12] 厉炯慧, 翁珊, 方婧, 等. 浙江海宁电镀工业园区周边土壤重金属污染特征及生态风险分析[J]. 环境科学, 2014, 35(4): 1509-1515. doi: 10.13227/j.hjkx.2014.04.045 LI J H, WENG S, FANG J, et al. Heavy metal pollution characteristics and ecological risk analysis for soil around Haining electroplating industrial park[J]. Environmental Science, 2014, 35(4): 1509-1515 (in Chinese). doi: 10.13227/j.hjkx.2014.04.045
[13] 万梦雪, 焦文涛, 胡文友, 等. 城市工业区土壤重金属累积特征与来源解析—以上海市闵行区典型工业区为例[J]. 环境化学, 2023, 42(6): 1886-1898. doi: 10.7524/j.issn.0254-6108.2021122903 WAN M X, JIAO W T, HU W Y, et al. Accumulation and source apportionment of heavy metals in urban-industrial soils - A case study in Minhang District of Shanghai[J]. Environmental Chemistry, 2023, 42(6): 1886-1898 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021122903
[14] 彭驰, 何亚磊, 郭朝晖, 等. 中国主要城市土壤重金属累积特征与风险评价[J]. 环境科学, 2022, 43(1): 1-10. PENG C, HE Y L, GUO Z H, et al. Characteristics and risk assessment of heavy metals in urban soils of major cities in China[J]. Environmental Science, 2022, 43(1): 1-10 (in Chinese).
[15] QIN C C, YUAN X Z, XIONG T, et al. Physicochemical properties, metal availability and bacterial community structure in heavy metal-polluted soil remediated by montmorillonite-based amendments[J]. Chemosphere, 2020, 261: 128010. doi: 10.1016/j.chemosphere.2020.128010 [16] 滕应, 骆永明, 沈仁芳, 等. 场地土壤-地下水污染物多介质界面过程与调控研究进展与展望[J]. 土壤学报, 2020, 57(6): 1333-1340. TENG Y, LUO Y M, SHEN R F, et al. Research progress and perspective of the multi-medium interface process and regulation principle of pollutants in site soil-groundwater[J]. Acta Pedologica Sinica, 2020, 57(6): 1333-1340 (in Chinese).
[17] 宫健, 何连生, 李强, 等. 典型石油场地周边土壤重金属形态特征及源解析[J]. 环境科学, 2022, 43(12): 5710-5717. GONG J, HE L S, LI Q, et al. Species distribution and source analysis of heavy metals in surrounding soil around typical petroleum sites[J]. Environmental Science, 2022, 43(12): 5710-5717 (in Chinese).
[18] MULLER G. Index of geoaccumulation in the sediments of the Rhine River[J]. Geojournal, 1969: 108-118. [19] MOR S, VIG N, RAVINDRA K. Distribution of heavy metals in surface soil near a coal power production unit: Potential risk to ecology and human health[J]. Environmental Monitoring and Assessment, 2022, 194(4): 263. doi: 10.1007/s10661-021-09692-w [20] IWEGBUE C M A. Metal fractionation in soil profiles at automobile mechanic waste dumps[J]. Waste Management & Research: the Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 2007, 25(6): 585-593. [21] AHN Y, YUN H S, PANDI K, et al. Heavy metal speciation with prediction model for heavy metal mobility and risk assessment in mine-affected soils[J]. Environmental Science and Pollution Research, 2020, 27(3): 3213-3223. doi: 10.1007/s11356-019-06922-0 [22] KE W S, ZENG J Q, ZHU F, et al. Geochemical partitioning and spatial distribution of heavy metals in soils contaminated by lead smelting[J]. Environmental Pollution, 2022, 307: 119486. doi: 10.1016/j.envpol.2022.119486 [23] BISWAS A, BESOLD J, SJÖSTEDT C, et al. Complexation of arsenite, arsenate, and monothioarsenate with oxygen-containing functional groups of natural organic matter: An XAS study[J]. Environmental Science & Technology, 2019, 53(18): 10723-10731. [24] LI C X, LI M, ZENG J Q, et al. Migration and distribution characteristics of soil heavy metal(loid)s at a lead smelting site[J]. Journal of Environmental Sciences, 2024, 135: 600-609. doi: 10.1016/j.jes.2023.02.007 [25] YANG J J, GUO Z W, JIANG L H, et al. Cadmium, lead and arsenic contamination in an abandoned nonferrous metal smelting site in Southern China: Chemical speciation and mobility[J]. Ecotoxicology and Environmental Safety, 2022, 239: 113617. doi: 10.1016/j.ecoenv.2022.113617 [26] 罗谦, 李英菊, 秦樊鑫, 等. 铅锌矿区周边耕地土壤团聚体重金属污染状况及风险评估[J]. 生态环境学报, 2020, 29(3): 605-614. LUO Q, LI Y J, QIN F X, et al. Contamination status and risk assessment of heavy metals in soil aggregates of Pb-Zn mining area[J]. Ecology and Environmental Sciences, 2020, 29(3): 605-614 (in Chinese).
[27] 代豫杰, 郭建英, 董智, 等. 不同沙生灌木下土壤颗粒及重金属空间分布特征[J]. 环境科学, 2017, 38(11): 4809-4818. DAI Y J, GUO J Y, DONG Z, et al. Spatial distribution of soil particles and heavy metals under different psammophilic shrubs in the Ulan Buh Desert[J]. Environmental Science, 2017, 38(11): 4809-4818 (in Chinese).
[28] HUANG B, LI Z W, HUANG J Q, et al. Adsorption characteristics of Cu and Zn onto various size fractions of aggregates from red paddy soil[J]. Journal of Hazardous Materials, 2014, 264: 176-183. doi: 10.1016/j.jhazmat.2013.10.074 [29] WANG X S, QIN Y, CHEN Y K. Heavy meals in urban roadside soils, part 1: Effect of particle size fractions on heavy metals partitioning[J]. Environmental Geology, 2006, 50(7): 1061-1066. doi: 10.1007/s00254-006-0278-1 [30] HUANG B, YUAN Z J, LI D Q, et al. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: a review[J]. Environmental Science:Processes & Impacts, 2020, 22(8): 1596-1615. [31] 王润珑, 徐应明, 王农, 等. 天津污灌区菜地土壤团聚体中有机碳和重金属含量特征[J]. 环境科学学报, 2018, 38(11): 4490-4496. WANG R L, XU Y M, WANG N, et al. Characteristics of organic carbon and heavy metals in aggregates of wastewater irrigation soils of Tianjin[J]. Acta Scientiae Circumstantiae, 2018, 38(11): 4490-4496 (in Chinese).
[32] 杨爱萍, 王小燕, 肖细元, 等. 锌冶炼废渣重金属在地块土壤中的垂向迁移特征及归趋[J]. 环境科学, 2023, 44(11): 6297-6308. YANG A P, WANG X Y, XIAO X Y, et al. Vertical migration characteristics and fate of heavy metals from zinc smelting slag in soil profile[J]. Environmental Science, 2023, 44(11): 6297-6308 (in Chinese).
[33] 姜时欣, 翟付杰, 张超, 等. 伊通河(城区段)沉积物重金属形态分布特征及风险评价[J]. 环境科学, 2020, 41(6): 2653-2663. JIANG S X, ZHAI F J, ZHANG C, et al. Speciation distribution and risk assessment of heavy metals in sediments from the Yitong River city area[J]. Environmental Science, 2020, 41(6): 2653-2663 (in Chinese).
[34] XU L, DAI H P, SKUZA L, et al. Comprehensive exploration of heavy metal contamination and risk assessment at two common smelter sites[J]. Chemosphere, 2021, 285: 131350. doi: 10.1016/j.chemosphere.2021.131350 [35] ZHANG Y B, ZHANG Q L, CHEN W F, et al. Source apportionment and migration characteristics of heavy metal(loid)s in soil and groundwater of contaminated site[J]. Environmental Pollution, 2023, 338: 122584. doi: 10.1016/j.envpol.2023.122584 [36] ACOSTA J A, JANSEN B, KALBITZ K, et al. Salinity increases mobility of heavy metals in soils[J]. Chemosphere, 2011, 85(8): 1318-1324. doi: 10.1016/j.chemosphere.2011.07.046