-
土壤是支撑人类、动物和整个生态系统“同一个健康”的重要基础[1]. 但近年来,随着人口的增长和 城市化的发展,土壤作为重金属(HMs)重要的汇集地,其重金属污染已成为生态系统和人类健康不可忽视的关键问题[2]. 研究表明,土壤中重金属可通过经口摄入、皮肤接触和呼吸等3种接触途径直接被人体摄入[3],且由于重金属具有生物毒性强和半衰期长的特征,即使摄入浓度较低,也可能会导致各种健康风险[4]. 如重金属在人体内累积会损害免疫系统,增加癌症、发育缺陷和死亡的发生率[5];铜的累积可能会诱发门克氏病和威尔逊氏病[6]; As和Hg的累积可能诱发多种癌症(皮肤癌、肺癌、肝癌和膀胱癌)及黑足病、伴四肢坏疽和溃疡[7]. 因此,对土壤中重金属开展污染水平调查和人体健康风险尤为重要.
目前,现有的健康风险评价(HRA)主要依赖于美国国家环境保护局(USEPA)推荐的模型,通常采用确定的暴露参数值和重金属浓度等进行确定性健康风险评估[8],但由于环境数据的随机性和不完整性,个体年龄、身体状况、性别和代谢等参数的差异,风险评估中的不确定性普遍存在,致使确定性风险评价结果的可靠性和信息量较低,与实际风险产生偏离[9]. 因此,相关学者在健康风险评估中引入了概率风险评估[10],其中蒙特卡罗(Monte-Carl)模拟作为目前最为有效的概率风险评估方法之一,其通过分析各不确定参数的概率分布模型,将污染物浓度和暴露参数的概率分布引入了评估模型,并通过随机抽样的方式,进行多次迭代模拟,获取预测值表征风险评价结果[11],很大程度的降低了健康风险评估过程中的不确定性,使评估结果更加准确[12]. 目前,相关研究者已使用该方法对上海78个城市公园[9]、铅锌冶炼厂周边农田[13]和榆林国家能源化工基地[14]土壤重金属进行了健康风险分析,但针对城区土壤重金属的健康概率风险评估鲜有报道.
西藏自治区位于中国青藏高原,地处世界第三极,人类活动相对较少,但旅游活动十分繁荣. 拉萨市作为西藏的政治、经济和文化交流中心,快速的城市进程带来了不可忽视的土壤环境问题. 熊健等[15]发现,拉萨城区及周边农田土壤中Cu、Zn、As和Hg含量均值分别为拉萨市背景值的1.1、1.2、1.2、2.1倍,所有元素均符合中污染风险筛选值. 赵雨顺等[16]发现,拉萨河流域沉积物整体呈无污染和轻微污染,但部分区域Cd、Cu、As、Pb仍存在污染风险.
为准确评估拉萨市城区土壤重金属对人体的潜在危害,本研究选取拉萨市城区土壤作为研究对象,测定土壤重金属Cd、Hg、As、Pb、Cr、Cu、Ni和Zn的含量,运用污染负荷指数法评价土壤环境质量,结合蒙特卡罗模拟对土壤中重金属健康风险进行概率评估,以期为拉萨市城区居民人体健康保障提供科学支撑.
基于蒙特卡罗模拟的拉萨城区土壤重金属健康风险评价
Health risk assessment of soil heavy metals in Lhasa urban area based on Monte Carlo simulation
-
摘要: 由于城市化的快速发展,城区土壤中重金属(HMs)的污染问题,目前已成为环境和人类健康风险的主要问题之一. 为科学地评价城区土壤重金属的健康风险,降低评价结果的不确定性,研究以拉萨城区土壤为研究对象,将蒙特卡罗模拟引入USEPA模型,构建了土壤重金属不确定性健康风险评价模型. 研究表明,拉萨城区表层土壤中Cu、Zn、Cr、Ni、Pb、Cd、As、Hg的含量均值分别为20.25、66.07、35.90、17.35、22.70、0.10、25.64、0.07 mg·kg−1. 除As和Zn外,均未超过拉萨市土壤背景值,污染负荷指数(PLIzone)为0.83,整体为无污染水平. 健康风险评价结果表明,拉萨城区表层土壤中,HMs对儿童和成人的总致癌风险(TCR)分别为1.30×10−5—7.60×10−5和1.03×10−5—8.15×10−5,处于可接受水平;总非致癌风险(HI)分别为1.82×10−1—1.27和3.91×10−2—3.57×10−1,成人均处于可接受水平,但儿童可能存在3.61%的概率高于风险阈值;其中As是最主要的风险元素,皮肤接触和经口摄入分别是成人和儿童的主要暴露途径,皮肤黏附系数和体重分别是成人和儿童的主要影响参数. 该模型可有效的降低健康风险评价中的不确定性,更加精确地反映区域健康风险状况,并能获取优先控制因子和暴露途径等信息.Abstract: Due to rapid urbanization, the contamination of heavy metals (HMs) in urban soil has emerged as a major environmental and human health concern. To scientifically assess the health risks associated with heavy metals in urban soil and reduce assessment uncertainties, this study focused on the urban soil of Lhasa city and integrated Monte Carlo simulation into the USEPA model, establishing an uncertainty-based health risk assessment model for soil heavy metals. The study indicates that the mean concentrations of Cu, Zn, Cr, Ni, Pb, Cd, As, and Hg in the surface soil of Lhasa city are 20.25, 66.07, 35.90, 17.35, 22.70, 0.10, 25.64, and 0.07 mg·kg−1, respectively. Importantly, with the exception of As and Zn, none of these values exceed the background values for soil in Lhasa city. The Pollution Load Index (PLIzone) is calculated to be 0.83, signifying an overall absence of contamination. The health risk assessment results demonstrate that the total carcinogenic risk (TCR) of HMs in the surface soil of the Lhasa urban area ranged from 1.30×10−5 to 7.60×10−5 for children and from 1.03×10−5 to 8.15×10−5 for adults, which are considered acceptable. Similarly, the non-carcinogeic risk index (HI) ranged from 1.82×10−1 to 1.27 for children and from 3.91×10−2 to 3.57×10−1 for adult, respectively, also within acceptable ranges for adults, but children might have a 3.61% probability of exceeding the risk threshold. Among the HMs, As emerged as the primary risk element, with adults primarily exposed through skin contact and children through oral ingestion. Skin adherence coefficient and body weight were identified as the main influencing parameters for adults and children, respectively. This model effectively reduces uncertainties in health risk assessment, providing a more accurate depiction of regional health risk conditions while also offering insights into priority control factors and exposure pathways.
-
Key words:
- Monte Carlo simulation /
- Lhasa urban area /
- soil /
- heavy metals /
- health risk assessment
-
表 1 污染负荷指数分级标准[20]
Table 1. Pollution load index classification criteria
CF PLI 等级
Level污染程度
Contamination degreesCF<1 PLI<1 0 无污染 1≤CF<3 1≤PLI <3 1 轻度污染 3≤CF<6 3≤PLI <6 2 中度污染 6≤CF 6≤PLI 3 重度污染 注:仅需满足表中任意一个因子即可. Note: Only any one of the factors in the table needs to be satisfied 表 2 基于蒙特卡洛模拟的健康风险评价暴露参数
Table 2. Exposure parameters for health risk evaluation based on Monte Carlo simulation
参数
Parameters含义
Meaning概率分布和取值
Probability distribution and values参考文献
Reference成人
Adults儿童
ChildrenIngR / ( mg· d−1) 土壤摄入速率 三角分布(4, 30, 52) 三角分布( 66, 103, 161) [22] InhR / ( m3·d−1) 土壤吸入速率 对数正态分布(9.01, 1.26) 对数正态分布 ( 7.71, 1.27) [23] EF / ( d·a−1) 暴露频率 三角分布(180,345,365) [24] ED / a 暴露持续时间 24 6 [25] BW / kg 暴露人群体重 正态分布(61.9, 11.31) 三角分布( 5.25, 29.3, 56.8) [26] AT / d 平均暴露时间 ED×365(非致癌)、70×365(致癌) PEF / ( m3·kg−1) 颗粒排放因子 1.36×109 [24] SL / ( mg·cm−2) 皮肤黏附系数 对数正态分布(0.49, 0.54) 对数正态分布 ( 0.65, 1.2) [23] SA / cm2 暴露皮肤表面积 三角分布(760, 1530, 4220) 三角分布( 430, 860, 2160) [26] ABF/无量纲 皮肤吸收因子 0.03(As)、0.001(其他金属) [26] 注:三角分布(最小值,最可能值,最大值) ;正态分布(均值,标准偏差) ;对数正态分布(均值,标准偏差).
Note: Triangular distribution (minimum, most probable, maximum); normal distribution (mean, standard deviation); lognormal distribution (mean, standard deviation).Table 3. Reference dose and slope carcinogenicity factors for different exposure routes
元素
ElementRfD SF 经口摄入
Ingestion呼吸摄入
Inhalation皮肤接触
Dermal经口摄入
Ingestion呼吸摄入
Inhalation皮肤接触
DermalCr 3.00×10−3 2.86×10−5 6.00×10−5 5.00×10−1 42.00 20.00 Hg 3.00×10−4 8.57×10−5 2.10×10−5 — — — Ni 2.00×10−2 2.06×10−2 5.40×10−3 1.70 8.40×10−1 42.50 Cu 4.00×10−2 4.02×10−2 1.20×10−2 — — — Zn 3.00×10−1 3.00×10−1 6.00×10−2 — — — As 3.00×10−4 1.23×10−4 1.23×10−4 1.50 15.10 3.66 Cd 1.00×10−3 1.00×10−5 1.00×10−5 6.10 6.30 — Pb 3.50×10−3 3.52×10−3 5.25×10−4 8.50×10−3 4.20×10−2 — 表 4 拉萨城区土壤重金属含量描述性统计分析
Table 4. Descriptive statistical analysis of soil heavy metal concentrations for urban area in Lhasa
项目
ItemCu Zn Cr Ni Pb Cd As Hg 最小值/( mg·kg−1) 15.00 50.80 27.00 12.00 18.50 0.07 18.50 0.01 最大值/( mg·kg−1) 36.00 87.30 54.00 22.00 41.90 0.22 48.90 0.22 均值/( mg·kg−1) 20.25 66.07 35.90 17.35 22.70 0.10 25.64 0.07 变异系数/% 24.03 15.29 18.50 17.57 25.16 31.47 30.54 90.33 背景值[30]/ (mg·kg−1) 22.00 65.00 42.00 21.00 31.00 0.12 20.00 0.09 第一类用地筛选值/( mg·kg−1) 2000.00 — — 150.00 400.00 20.00 20.00 8.00 分布类型 负二项 Poisson 二项 Beta 对数正态 最大极值 对数正态 指数 表 5 省会城市土壤中重金属含量均值 (mg·kg−1)
Table 5. Average value of heavy metal concentrations in soils of provincial capitals
地区
DistrictCu Zn Cr Ni Pb Cd As Hg 参考文献 拉萨 20.25 66.07 35.90 17.35 22.70 0.10 25.64 0.07 本研究 天津 45.00 148.00 81.00 33.00 44.00 0.39 11.00 0.18 [31] 南宁 45.60 105.00 46.00 18.00 65.60 0.77 7.05 0.37 [32] 石家庄 27.39 104.48 71.85 28.20 31.00 0.28 9.42 0.11 [33] 哈尔滨 22.33 72.03 61.28 25.73 26.74 0.17 8.87 0.08 [34] 表 6 不同暴露途径下成人和儿童的确定性非致癌健康风险评价结果
Table 6. Results of deterministic non-carcinogenic health risk assessment for adults and children by different exposure routes
元素
Element成人
Adults儿童
ChildrenHQing HQinh HQder HI 贡献率 HQing HQinh HQder HI 贡献率 Cu 2.32×10−4 5.10×10−8 1.93×10−5 2.51×10−4 0.20% 1.68×10−3 9.21×10−8 3.04×10−5 1.71×10−3 0.36% Cr 5.48×10−3 1.27×10−4 6.85×10−3 1.25×10−2 9.76% 3.98×10−2 2.30×10−4 1.08×10−2 5.08×10−2 10.65% Ni 3.97×10−4 8.52×10−8 3.68×10−5 4.34×10−4 0.34% 2.88×10−3 1.54×10−7 5.79×10−5 2.94×10−3 0.62% Zn 1.01×10−4 2.23×10−8 1.26×10−5 1.14×10−4 0.09% 7.32×10−4 4.03×10−8 1.99×10−5 7.52×10−4 0.16% Pb 2.97×10−3 6.52×10−7 4.95×10−4 3.47×10−3 2.71% 2.15×10−2 1.18×10−6 7.80×10−4 2.23×10−2 4.68% Cd 4.70×10−5 1.04×10−6 1.17×10−4 1.65×10−4 0.13% 3.41×10−4 1.87×10−6 1.85×10−4 5.27×10−4 0.11% As 3.91×10−2 2.11×10−5 7.16×10−2 1.11×10−1 86.66% 2.84×10−1 3.81×10−5 1.13×10−1 3.97×10−1 83.24% Hg 1.14×10−4 8.78×10−8 4.05×10−5 1.54×10−4 0.12% 8.23×10−4 1.59×10−7 6.38×10−5 8.87×10−4 0.19% 注:表6和表7中数据均为平均值. Note: Data in the table are averages 表 7 不同暴露途径下成人和儿童的确定性致癌健康风险评价结果
Table 7. Results of the deterministic carcinogenic health risk assessment for adults and children by different exposure routes
元素
Element成人
Adults儿童
ChildrenCRing CRinh CRder TCR 贡献率 CRing CRinh CRder TCR 贡献率 Cr 2.82×10−6 5.23×10−8 2.82×10−6 5.69×10−6 18.69% 5.11×10−6 2.36×10−8 1.11×10−6 6.25×10−6 23.04% Ni 4.63×10−6 5.05×10−10 2.89×10−6 7.53×10−6 24.73% 8.40×10−6 2.28×10−10 1.14×10−6 9.54×10−6 35.17% Pb 3.03×10−8 3.31×10−11 − 3.03×10−8 0.10% 5.49×10−8 1.49×10−11 − 5.50×10−8 0.20% Cd 9.82×10−8 2.24×10−11 − 9.82×10−8 0.32% 1.78×10−7 1.01×10−11 − 1.79×10−7 0.66% As 6.04×10−6 1.34×10−8 1.10×10−5 1.71×10−5 56.16% 1.10×10−5 6.07×10−9 1.45×10−7 1.11×10−5 40.92% 表 8 不同暴露途径下成人和儿童的不确定性健康风险结果
Table 8. Uncertain health risk outcomes for adults and children under different exposure routes
元素
Element非致癌风险
Non-carcinogenic risk致癌风险
Carcinogen riskHQing HQinh HQder CRing CRinh CRder 成人
AdultsCu 1.98×10−4 8.92×10−8 2.51×10−5 — — — Cr 4.67×10−3 2.22×10−4 8.83×10−3 2.40×10−6 4.68×10−8 3.59×10−6 Ni 3.39×10−4 1.49×10−7 4.75×10−5 3.92×10−6 4.49×10−10 3.66×10−6 Zn 8.59×10−5 3.90×10−8 1.63×10−5 — — — Pb 2.53×10−3 1.14×10−6 6.40×10−4 2.57×10−8 2.95×10−11 — Cd 3.97×10−5 1.80×10−6 1.50×10−4 8.28×10−8 1.99×10−11 — As 3.32×10−2 3.67×10−5 9.17×10−2 5.11×10−6 1.19×10−8 1.40×10−5 Hg 9.71×10−5 1.54×10−7 5.22×10−5 — — — 儿童
ChildrenCu 1.73×10−3 4.54×10−8 4.09×10−5 — — — Cr 4.30 1.13×10−4 1.45×10−2 5.26×10−6 2.28×10−8 1.41×10−6 Ni 2.97×10−3 7.61×10−8 7.89×10−5 8.59×10−6 2.20×10−10 1.44×10−6 Zn 7.54×10−4 1.98×10−8 2.69×10−5 — — — Pb 2.22×10−2 5.80×10−7 1.05×10−3 5.26×10−6 1.44×10−11 — Cd 3.48×10−4 9.17×10−7 2.48×10−4 1.82×10−7 9.70×10−12 — As 2.91×10−1 1.87×10−5 1.52×10−1 1.12×10−5 5.83×10−9 5.51×10−6 Hg 8.55×10−4 7.83×10−8 9.06×10−5 — — — 注:表中数据均为平均值. Note: Data in the table are averages -
[1] LEHMANN J, BOSSIO D A, KÖGEL-KNABNER I, et al. The concept and future prospects of soil health[J]. Nature Reviews Earth & Environment, 2020, 1(10): 544-553. [2] ADIMALLA N. Heavy metals contamination in urban surface soils of Medak Province, India, and its risk assessment and spatial distribution[J]. Environmental Geochemistry and Health, 2020, 42(1): 59-75. doi: 10.1007/s10653-019-00270-1 [3] JIANG H H, CAI L M, WEN H H, et al. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals[J]. Science of the Total Environment, 2020, 701: 134466. doi: 10.1016/j.scitotenv.2019.134466 [4] LIN Y, MA J, ZHANG Z D, et al. Linkage between human population and trace elements in soils of the Pearl River Delta: Implications for source identification and risk assessment[J]. Science of the Total Environment, 2018, 610/611: 944-950. doi: 10.1016/j.scitotenv.2017.08.147 [5] STORELLI M M. Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: Estimation of target hazard quotients (THQs) and toxic equivalents (TEQs)[J]. Food and Chemical Toxicology, 2008, 46(8): 2782-2788. doi: 10.1016/j.fct.2008.05.011 [6] SCHLIEF M L, WEST T, CRAIG A M, et al. Role of the Menkes copper-transporting ATPase in NMDA receptor-mediated neuronal toxicity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(40): 14919-14924. [7] LI D L, ZHANG H C, CHANG F Q, et al. Environmental arsenic (As) and its potential relationship with endemic disease in southwestern China[J]. Journal of Environmental Sciences, 2024, 139: 46-59. doi: 10.1016/j.jes.2023.05.005 [8] BRTNICKÝ M, PECINA V, HLADKÝ J, et al. Assessment of phytotoxicity, environmental and health risks of historical urban park soils[J]. Chemosphere, 2019, 220: 678-686. doi: 10.1016/j.chemosphere.2018.12.188 [9] HUANG J L, WU Y Y, SUN J X, et al. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model[J]. Journal of Hazardous Materials, 2021, 415: 125629. doi: 10.1016/j.jhazmat.2021.125629 [10] PENG C, CAI Y M, WANG T Y, et al. Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: An urbanization-affected drinking water supply area[J]. Scientific Reports, 2016, 6: 37084. doi: 10.1038/srep37084 [11] CHABUKDHARA M, NEMA A K. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach[J]. Ecotoxicology and Environmental Safety, 2013, 87: 57-64. doi: 10.1016/j.ecoenv.2012.08.032 [12] 屠德刚, 冯涛, 杨国栋, 等. 机械厂遗留场地重金属污染特征及健康风险评价[J]. 环境工程, 2022, 40(4): 217-223. TU D G, FENG T, YANG G D, et al. Pollution analysis and health risk assessment of heavy metals in an abandoned machinery plant[J]. Environmental Engineering, 2022, 40(4): 217-223 (in Chinese).
[13] 黄剑波, 姜登登, 温冰, 等. 基于蒙特卡罗模拟的铅锌冶炼厂周边农田土壤重金属健康风险评估[J]. 环境科学, 2023, 44(4): 2204-2214. HUANG J B, JIANG D D, WEN B, et al. Contamination and probabilistic health risk assessment of heavy metals in agricultural soils around a lead-zinc smelter[J]. Environmental Science, 2023, 44(4): 2204-2214 (in Chinese).
[14] LIU J, LIU Y J, LIU Y, et al. Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: A case study of Yulin, China[J]. Ecotoxicology and Environmental Safety, 2018, 164: 261-269. doi: 10.1016/j.ecoenv.2018.08.030 [15] 熊健, 巴桑, 张娜, 等. 拉萨城区及周边农田土壤的主要性质和重金属分布初探[J]. 高原科学研究, 2021, 5(4): 16-24. doi: 10.16249/j.cnki.2096-4617.2021.04.003 XIONG J, BASANG, ZHANG N, et al. Preliminary Study on the Physical and Chemical Properties and Heavy Metal Distribution of Farmland Soil in Lhasa city and its surrounding areas[J]. Plateau Science Research, 2021, 5(4): 16-24 (in Chinese). doi: 10.16249/j.cnki.2096-4617.2021.04.003
[16] 赵雨顺. 拉萨河流域沉积物重金属含量分析及家庭用水健康风险评价[D]. 天津: 天津大学, 2018. ZHAO Y S. Analysis of heavy metal content in sediments of Lhasa River Basin and health risk assessment of household water use[D]. Tianjin: Tianjin University, 2018 (in Chinese).
[17] 张船红, 何政伟, 仇文侠, 等. 拉萨市城关区土地利用与土壤侵蚀变化分析[J]. 水土保持研究, 2010, 17(3): 73-78. ZHANG C H, HE Z W, QIU W X, et al. Analysis change of landuse and soil erosion in Chengguan district of Lhasa[J]. Research of Soil and Water Conservation, 2010, 17(3): 73-78 (in Chinese).
[18] 生态环境部. 土壤环境监测技术规范: HJ/T 166—2004[S]. 北京: 中国环境出版社, 2004. Technical specification for soil environmental monitoring: HJ/T 166—2004[S]. Beijing: China Environmental Press, 2004 (in Chinese).
[19] 邓霞, 孙慧兰, 杨余辉, 等. 伊宁市土壤中重金属污染评价及来源解析研究[J]. 环境污染与防治, 2020, 42(2): 223-226,237. doi: 10.15985/j.cnki.1001-3865.2020.02.018 DENG X, SUN H L, YANG Y H, et al. Pollution assessment and source apportionment of heavy metals in Yining City soil[J]. Environmental Pollution & Control, 2020, 42(2): 223-226,237 (in Chinese). doi: 10.15985/j.cnki.1001-3865.2020.02.018
[20] 李颜颜. 黄河下游开封段背河洼地区土壤重金属污染研究[D]. 开封: 河南大学, 2019. LI Y Y. Study on soil heavy metal pollution in Beihewa area of Kaifeng section of the lower Yellow River[D]. Kaifeng: Henan University, 2019 (in Chinese).
[21] 黄安香, 柏文恋, 邬能英, 等. 贵州油茶主产区土壤重金属环境质量状况及风险评价[J]. 环境化学, 2023, 42(4): 1325-1336. doi: 10.7524/j.issn.0254-6108.2021110402 HUANG A X, BAI W L, WU N Y, et al. Pollution and risk assessment of heavy metals in Camellia oleifera main producing area soil of Guizhou Province[J]. Environmental Chemistry, 2023, 42(4): 1325-1336 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021110402
[22] YANG S Y, ZHAO J, CHANG S X, et al. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis[J]. Environment International, 2019, 128: 165-174. doi: 10.1016/j.envint.2019.04.044 [23] HUANG Y N, DANG F, LI M, et al. Environmental and human health risks from metal exposures nearby a Pb-Zn-Ag Mine, China[J]. Science of the Total Environment, 2020, 698: 134326. doi: 10.1016/j.scitotenv.2019.134326 [24] CHEN R H, CHEN H Y, SONG L T, et al. Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils[J]. Science of the Total Environment, 2019, 694: 133819. doi: 10.1016/j.scitotenv.2019.133819 [25] Ministry of Environmental Protection of the People’s Republic of China. Exposure factor shand book of Chinesepopulation[R]. Beijing: China Environmental Science Press, 2014. [26] USEPA. Risk assessment guidance for superfund, Volume 1, Human health evaluation manual. Part B[R]. Washington, D. C, 2011. [27] LIU Z, DU Q Q, GUAN Q Y, et al. A Monte Carlo simulation-based health risk assessment of heavy metals in soils of an oasis agricultural region in northwest China[J]. Science of the Total Environment, 2023, 857: 159543. doi: 10.1016/j.scitotenv.2022.159543 [28] 张成丽, 张伟平, 程红丹, 等. 禹州市煤矿区周边土壤和农作物重金属污染状况及健康风险评价[J]. 环境化学, 2019, 38(4): 805-812. doi: 10.7524/j.issn.0254-6108.2018060502 ZHANG C L, ZHANG W P, CHENG H D, et al. Heavy metal contamination and health risk assessment of farmland soil around coal mines in Yuzhou City[J]. Environmental Chemistry, 2019, 38(4): 805-812 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018060502
[29] 生态环境部, 国家市场监督管理总局. 土壤环境质量 建设用地土壤污染风险管控标准: GB 36600—2018[S]. 北京: 中国标准出版社, 2018. Ministry of Ecology and Environment of the People’S Republic of China, State Administration for Market Regulation. Soil environmental quality Risk control standard for soil contamination of development land: GB 36600—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
[30] 成杭新, 李括, 李敏, 等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘, 2014, 21(3): 265-306. doi: 10.13745/j.esf.2014.03.028 CHENG H X, LI K, LI M, et al. Geochemical background and baseline value of chemical elements in urban soil in China[J]. Earth Science Frontiers, 2014, 21(3): 265-306 (in Chinese). doi: 10.13745/j.esf.2014.03.028
[31] 侯佳渝, 杨耀栋, 程绪江. 天津市城区不同功能区绿地土壤重金属分布特征及来源研究[J]. 物探与化探, 2021, 45(5): 1130-1134. HOU J Y, YANG Y D, CHENG X J. Distribution and sources of heavy metals in greenbelt soil in different functional zones of Tianjin City[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1130-1134 (in Chinese).
[32] 黄锐, 苏贺, 赵丹. 南宁心圩江底泥重金属污染特征分析[J]. 西部交通科技, 2020(1): 185-188,196. doi: 10.13282/j.cnki.wccst.2020.01.052 HUANG R, SU H, ZHAO D. Characteristics of heavy metal pollution in sediment of Xinxu River in Nanning[J]. Western China Communications Science & Technology, 2020(1): 185-188,196 (in Chinese). doi: 10.13282/j.cnki.wccst.2020.01.052
[33] 柴立立, 崔邢涛. 河北省重点城市土壤重金属污染评价与防治对策: 以石家庄市为例[J]. 科学技术与工程, 2019, 19(3): 261-268. doi: 10.3969/j.issn.1671-1815.2019.03.043 CHAI L L, CUI X T. Pollution assessments and prevention countermeasures of heavy metals of soil in main cities of Hebei Province: Taking Shijiazhuang as an example[J]. Science Technology and Engineering, 2019, 19(3): 261-268 (in Chinese). doi: 10.3969/j.issn.1671-1815.2019.03.043
[34] 张慧, 郑志志, 马鑫鹏, 等. 哈尔滨市土壤表层重金属污染特征及来源辨析[J]. 环境科学研究, 2017, 30(10): 1597-1606. doi: 10.13198/j.issn.1001-6929.2017.02.81 ZHANG H, ZHENG Z Z, MA X P, et al. Sources and pollution characteristics of heavy metals in surface soils of Harbin city[J]. Research of Environmental Sciences, 2017, 30(10): 1597-1606 (in Chinese). doi: 10.13198/j.issn.1001-6929.2017.02.81
[35] JAIN S, SHARMA S K, CHOUDHARY N, et al. Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India[J]. Environmental Science and Pollution Research, 2017, 24(17): 14637-14656. doi: 10.1007/s11356-017-8925-5 [36] 徐国良, 文雅, 蔡少燕, 等. 城市表层土壤对生态健康影响研究述评[J]. 地理研究, 2019, 38(12): 2941-2956. doi: 10.11821/dlyj020190240 XU G L, WEN Y, CAI S Y, et al. Review for the effects of urban topsoil on the ecological health[J]. Geographical Research, 2019, 38(12): 2941-2956 (in Chinese). doi: 10.11821/dlyj020190240
[37] 熊敏, 桑语, 黄相钦, 等. 青藏高原东缘城市绿地表层土壤汞污染现状及风险评估[J]. 西华师范大学学报(自然科学版), 2023, 44(4): 333-341. XIONG M, SANG Y, HUANG X Q, et al. Mercury contamination and risk assessment of topsoil from urban green space at the eastern margin of qinghai-tibet plateau[J]. Journal of China West Normal University (Natural Sciences), 2023, 44(4): 333-341 (in Chinese).
[38] 尹伟, 卢瑛, 李军辉, 等. 广州城市土壤汞的分布特征及污染评价[J]. 土壤通报, 2009, 40(5): 1185-1188. doi: 10.19336/j.cnki.trtb.2009.05.045 YIN W, LU Y, LI J H, et al. Distribution characteristics and pollution assessment of mercury in urban soils of Guangzhou[J]. Chinese Journal of Soil Science, 2009, 40(5): 1185-1188 (in Chinese). doi: 10.19336/j.cnki.trtb.2009.05.045
[39] 任晓辉, 高宗军, 安永会, 等. 张掖市甘州区北部土壤重金属污染特征及生态风险评价[J]. 干旱区资源与环境, 2020, 34(7): 163-169. doi: 10.13448/j.cnki.jalre.2020.198 REN X H, GAO Z J, AN Y H, et al. Pollution characteristics and ecological risk assessment of soil heavy metals in northern Ganzhou district, Zhangye city[J]. Journal of Arid Land Resources and Environment, 2020, 34(7): 163-169 (in Chinese). doi: 10.13448/j.cnki.jalre.2020.198
[40] LI J E, LI C, SUN H J, et al. Arsenic relative bioavailability in contaminated soils: Comparison of animal models, dosing schemes, and biological end points[J]. Environmental Science & Technology, 2016, 50(1): 453-461. [41] 郭志娟, 周亚龙, 王乔林, 等. 雄安新区土壤重金属污染特征及健康风险[J]. 中国环境科学, 2021, 41(1): 431-441. doi: 10.3969/j.issn.1000-6923.2021.01.049 GUO Z J, ZHOU Y L, WANG Q L, et al. Characteristics of soil heavy metal pollution and health risk in Xiongan New District[J]. China Environmental Science, 2021, 41(1): 431-441 (in Chinese). doi: 10.3969/j.issn.1000-6923.2021.01.049
[42] CHEN H Y, TENG Y G, LU S J, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512/513: 143-153. doi: 10.1016/j.scitotenv.2015.01.025 [43] HE M J, SHEN H R, LI Z T, et al. Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety[J]. Environmental Pollution, 2019, 244: 431-439. doi: 10.1016/j.envpol.2018.10.070 [44] ZHANG Y M, LI S, CHEN Z, et al. A systemic ecological risk assessment based on spatial distribution and source apportionment in the abandoned lead acid battery plant zone, China[J]. Journal of Hazardous Materials, 2018, 354: 170-179. doi: 10.1016/j.jhazmat.2018.04.054 [45] 段小丽, 王宗爽, 李琴, 等. 基于参数实测的水中重金属暴露的健康风险研究[J]. 环境科学, 2011, 32(5): 1329-1339. doi: 10.13227/j.hjkx.2011.05.031 DUAN X L, WANG Z S, LI Q, et al. Health risk assessment of heavy metals in drinking water based on field measurement of exposure factors of Chinese people[J]. Environmental Science, 2011, 32(5): 1329-1339 (in Chinese). doi: 10.13227/j.hjkx.2011.05.031
[46] 侯捷, 曲艳慧, 宁大亮, 等. 暴露参数对苯污染场地健康风险评价的影响[J]. 环境科学与技术, 2014, 37(11): 191-195,200. HOU J, QU Y H, NING D L, et al. Impact of human exposure factors on health risk assessment for benzene contaminated site[J]. Environmental Science & Technology, 2014, 37(11): 191-195,200 (in Chinese).