-
随着生产规模的扩大和工业化程度的提高,染料废水等难降解的工业废水产量越来越高[1 − 2]. 染料在造纸、纺织、印刷等领域被广泛应用,如何高效、彻底的处理染料废水是实现生态和谐必须考虑的重点问题之一[3 − 4]. 染料通常具有特殊的芳香结构,导致染料废水具有较强的抗氧化性和光稳定性,传统的生物法处理此类废水时效果难以保证[5]. 甲基橙(methyl orange, MO)、亚甲基蓝(Methylene Blue, MB)和罗丹明B(Rhodamine B, RhB)是染料废水中常见的有机染料,均具有一定生物毒性,易对自然环境和人类健康产生有害影响[6]. 在处理染料废水时,吸附法[7]、化学法[8]和生物法[9]等常规水处理方法存在分解不彻底、运行成本较高、脱色效果差、产生二次污染等局限性[10]. 研究者们一直致力于寻找和尝试更优技术来对染料废水进行高效无公害地处理. 光催化技术作为一种新型高级氧化技术,具有绿色高效、低能耗、反应条件温和、无二次污染等优点[11 − 12],能够同时实现能源转化和环境修复,在降解污染物方面有良好的应用前景.
光催化剂是光催化技术中影响活性氧物种生成的根本因素,因此发展高效、稳定的光催化剂势在必行. 传统的单一半导体光催化剂能带结构固定,往往存在对可见光利用范围小、载流子复合速率快、氧化还原能力弱等缺陷,限制了其光催化反应性能[13]. 针对这一问题,异质结的构建是提高光催化活性的有效途径[14]. 合理构建两种或多种半导体材料的异质结构,可以综合多组分的优势,扩大可见光吸收范围、改善光诱导电荷分离[15].
根据半导体的不同能带排列,传统异质结可分为type-I 型、type-Ⅱ 型和type-Ⅲ 型,如图1所示. type-I 型的能带为跨越式排列,光生电子和空穴均迁移聚集在同一半导体上,不利于分离. type-Ⅲ 型的能带为中断式排列,电子和空穴在界面间无迁移行为[16]. 相比之下,type-Ⅱ 型异质结具有交错能带构型,具有更好的电子和空穴转移能力. 两种半导体中的电子和空穴以相反路径移动,分别在半导体1(Semiconductor 1, S1)和半导体2(Semiconductor 2, S2)的导带(Conduction Band, CB)和价带(Valent Band, VB)上聚集,在空间上实现了一定分离. 但这种电荷转移方式会降低体系的氧化还原能力,其电荷转移速率不够理想. 近年来,基于植物的光合作用过程,Z型异质结被研究者们开发、利用,其半导体中有较多的正VB电位和负CB电位,能够改善电子和空穴的转移,使得一部分电子和空穴进行复合或被消耗,留下具有更强氧化还原能力电子和空穴. 因此Z型异质结能够有效地分离光生电子-空穴(e−/h+)对,保留强氧化还原活性位点,同时促进对可见光的利用,达到增强整体光催化体系的效果.
本文简述了光催化基本机理和Z型异质结对光催化性能的增效机制,综述了以三类研究广泛、前景良好的光催化剂为主体构造的Z型异质结光催化剂降解水中染料污染物的研究现状,总结了其构造方法和设计原理,提出了未来发展亟待解决的基础科学问题和挑战.
可见光驱动Z型异质结光催化剂处理染料废水的研究进展
Research progress of visible light driven Z-scheme heterojunction photocatalyst for the treatment of dye wastewater
-
摘要: 染料废水对人类和环境危害较大且难以降解,光催化反应作为新兴的绿色环保处理技术,仅利用太阳光激活光催化剂,就可以把废水中难降解的有机污染物转化为CO2和H2O等小分子. 光催化技术弥补了传统污水处理技术去除率低、效果不稳定等缺陷,具有可重复利用、无二次污染、处理效率高等优势. Z型异质结作为提高光催化性能的有效手段,具有降低光生电子-空穴对复合速率、扩大光响应范围、高氧化还原性等优点,是近年来新型光催化剂的研究热点,在降解染料废水方面有广泛的应用前景. 本文综述了光催化降解污染物的机理、Z型异质结的优势,以及Z型异质结光催化剂在降解染料废水中的应用,提出目前仍存在的问题和今后的研究方向.Abstract: Dye wastewaters are harmful to both human beings and the environment that presents a huge challenge for efficient degradation. As an emerging environmentally friendly technology, the photocatalytic reaction harnesses sunlight to activate photocatalysts in the treatment of contaminants of refractory organic pollutants in wastewater, thereby converting them into smaller molecules, such as CO2 and H2O. This advanced technique addresses the limitations of conventional sewage treatment methods, which suffered from low removal rates and unstable outcomes. Moreover, photocatalysis exhibits advantages such as reusability, absence of secondary pollution, and high efficiency. To enhance the photocatalytic performance, the design of Z-scheme heterojunction proves to be an efficacious approach, which diminishes the recombination rate of photoinduced electron-hole pairs, broadens the spectrum of light response, and exhibits strong oxidation and reduction capabilities, respectively. Consequently, it has become a novel strategy to design high-performance photocatalysts toward the application in dye wastewater degradation. This review provides an overview of the underlying mechanism of photocatalytic pollutant degradation, highlights the benefits of Z-scheme heterojunction, explores the application in dye wastewater treatment, and points out the current challenges and future research directions.
-
Key words:
- photocatalyst /
- Z-scheme heterojunction /
- visible light /
- dye wastewater.
-
表 1 基于TiO2的Z型异质结光催化剂降解染料污染物
Table 1. Degradation of dyes pollutants by Z-scheme heterojunction of TiO2
光催化剂
Photocatalyst合成方法
Synthetic methods光源种类
Light conditions污染物
Pollutant降解率(时间)
Degradation rate (time)参考文献
ReferenceBi2S3/MoS2/TiO2 微波辅助水热法 250 W 氙灯 MB 99% (4 min) [33] WO3/ TiO2 静电纺丝法 100 W 汞灯 MB 96.2% (150 min) [34] g-C3N4/ TiO2 简单煅烧法 氙灯 MB 97.7% (150 min) [38] MOFx/P-TiO2 水热法 300 W氙灯 RhB 97.6% (25 min) [39] Cu2O/Au/TiO2 氧化还原法 300 W氙灯 MO 96.5% (60 min) [40] Cu2O/Ag/TNT 电沉积和光催化还原法 250 W氙灯 MB 98.58% (90 min) [41] TiO2-Au-BiOBr 连续离子层吸附反应法 300 W氙灯 RhB 99.91% (30 min) [42] 表 2 g-C3N4 Z型异质结光催化剂降解染料污染物
Table 2. Degradation of dyes pollutants by Z-scheme heterojunction of g-C3N4 photocatalyst
光催化剂
Photocatalyst合成方法
Synthetic methods光源种类
Light conditions污染物
Pollutant降解率(时间)
Degradation rate (time)参考文献
Referenceg-C3N4/ TiO2 煅烧法 λ> 420 nm MB 97.7% (150 min) [38] WO3/g-C3N4 原位液相法 300 W 氙灯 MB 95% (90 min) [46] g-C3N4/ZnO@GA 水热自组装和冷冻干燥法 300 W氙灯 RhB 82.7% (120 min) [47] CNS-TiO2/g-C3N4 水热法和煅烧法 λ>420 nm MO 99.8% (80 min) [48] g-C3N4/ZnO 共晶-再结晶法 350 W氙灯 MO 68% (240 min) [49] V2O5/P-g-C3N4 催化还原法 500 W氙灯 MO 92.6% (120 min) [50] C@Ti4O7/g-C3N4 湿法化学与退火煅烧法 500 W氙灯 RhB 91.3% (150 min) [51] mpg-C3N4/Ag6Si2O7 超声波辅助湿化学法 75 W金属卤化物灯 MB 94.1% (30 min) [53] g-C3N4/Ag3PO4 煅烧和溶液沉淀 可见光 MO 95% (30 min) [55] g-C3N4/ NiFe2O4 水热法 10 W LED灯 MO Nearly 100% (210 min) [56] CaTiO3/g-C3N4/AgBr 四步法 200 W氙灯 RhB 99.6% (30 min) [57] 表 3 基于铋系材料的 Z型异质结光催化剂降解染料污染物
Table 3. Degradation of dyes pollutants by Z-scheme heterojunction of Bismuth material
光催化剂
Photocatalyst合成方法
Synthetic methods光源种类
Light conditions污染物
Pollutant降解率(时间)
Degradation rate (time)参考文献
Referenceg-C3N4/ Bi2WO6 水热和浸渍煅烧法 300 W金属卤化物灯 MB Nearly 100% (60 min) [52] g-C3N4/RGO/BiVO4 水热和热氧化法 可见光 RhB 100% (20 min) [54] MoO3/Bi2O4 水热法 100 W LED RhB 99.6% (40 min) [59] Bi2S3/SnS2/Bi2O3 一锅溶剂热法 350 W 氙灯 RhB 99.6 % (90 min) [60] Bi2WO6/r-GO/Bi25FeO40 水热法 200 W可见光 MB 98.1% (30 min) [64] Ag3PO4/RGO/ Bi2MoO6 沉淀溶剂热法 可见光 MB 97.53% (60 min) [66] Bi2WO6/MnO2 简单的无模板法 300 W 氙灯 MB (100 min) [67] CoFe2O4/BiOBr/GA 水热法 200 W LED RhB Nearly 100% (120 min) [72] CuInS2@BiOBr 两步水热法 30 W 可见光 RhB 97% (75 min) [73] BiOI/CdS 原位搅拌和煅烧法 1 KW 氙灯 RhB
MB93.9% (30 min)
70% (120 min)[74] BiOI@UIO-66(NH2)@g-C3N4 原位溶热-水热法 300 W 氙灯 RhB 95% (80 min) [75] BiVO4/Ag/Ag2O 化学沉积法 LEDs灯 RhB 100% (5 min) [78] CdS /BiVO4 水热法 400 W金属卤化物灯 RhB 94.7% (60 min) [79] Bi2WO6/Bi2MoO6 溶剂热法 可见光 RhB Nearly 100% (120 min) [80] Ag2WO4/
Bi2MoO6溶热沉淀法 300 W 氙灯 (λ≥400 nm) MB Nearly 100% (30 min) [81] -
[1] KHALILOVA H K, HASANOVA S A, ALIYEV F G, et al. Photocatalytic removal of organic pollutants from industrial wastewater using TiO2 catalyst[J]. Journal of Environmental Protection, 2018, 9(6): 691-698. doi: 10.4236/jep.2018.96043 [2] AHUJA P, UJJAIN S K, KANOJIA R, et al. Transition metal oxides and their composites for photocatalytic dye degradation[J]. Journal of Composites Science, 2021, 5(3): 82. doi: 10.3390/jcs5030082 [3] ZHOU Y B, LU J, ZHOU Y, et al. Recent advances for dyes removal using novel adsorbents: A review[J]. Environmental Pollution, 2019, 252(Pt A): 352-365. [4] ABDI J, VOSSOUGHI M, MAHMOODI N M, et al. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal[J]. Chemical Engineering Journal, 2017, 326: 1145-1158. doi: 10.1016/j.cej.2017.06.054 [5] YUE H D, HANG M T, ZHENG M T, et al. Study on preparation of new type amino rare earth metal-organic framework material and photocatalytic degradation of organic dyes[J]. New Chemical Materials, 2021, 1-8. [6] PEERAKIATKHAJOHN P, BUTBUREE T, SUL J H, et al. Efficient and rapid photocatalytic degradation of methyl orange dye using Al/ZnO nanoparticles[J]. Nanomaterials, 2021, 11(4): 1059. doi: 10.3390/nano11041059 [7] HUANG Z H, LI Y Z, CHEN W J, et al. Modified bentonite adsorption of organic pollutants of dye wastewater[J]. Materials Chemistry and Physics, 2017, 202: 266-276. doi: 10.1016/j.matchemphys.2017.09.028 [8] ZHOU L, ZHOU H J, YANG X Y. Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment[J]. Separation and Purification Technology, 2019, 210: 93-99. doi: 10.1016/j.seppur.2018.07.089 [9] MUSTAFA G, TARIQ ZAHID M, ALI S, et al. Biodegradation and discoloration of disperse blue-284 textile dye by Klebsiella pneumoniae GM-04 bacterial isolate[J]. Journal of King Saud University - Science, 2021, 33(4): 101442. doi: 10.1016/j.jksus.2021.101442 [10] SOTO D, LEÓN O, MUÑOZ-BONILLA A, et al. Succinylated starches for dye removal[J]. Starch - Stä rke, 2021, 73(1/2): 2000043. [11] 杨烨鹏, 李懿舟, 王家强, 等. 光催化技术在处理废水中的规模化应用[J]. 云南大学学报(自然科学版), 2019, 41(3): 565-571. YANG Y P, LI Y Z, WANG J Q, et al. scale-up photocatalytic treatment of wastewater[J]. Journal of Yunnan University (Natural Sciences Edition), 2019, 41(3): 565-571 (in Chinese).
[12] SU Y M, YU X, FU X H, et al. Embedding Ag nanoparticles to construct BiOI/Ag/PANI with enhanced photoelectrocatalytic activity: A demonstration of the switch from type-Ⅱ to Z-scheme[J]. Electrochimica Acta, 2020, 344: 136144. doi: 10.1016/j.electacta.2020.136144 [13] ZHANG M F, ZHANG Z M, JIA J W, et al. Research progress in the design, fabrication and application of Z-scheme heterojunction photocatalysts[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 18-32. [14] ZHAO Z, XING Y B, LI H B, et al. Constructing CdS/Cd/doped TiO2 Z-scheme type visible light photocatalyst for H2 production[J]. Science China Materials, 2018, 61(6): 851-860. doi: 10.1007/s40843-017-9170-6 [15] LI Y F, ZHOU M H, CHENG B, et al. Recent advances in g-C3N4-based heterojunction photocatalysts[J]. Journal of Materials Science & Technology, 2020, 56: 1-17. [16] 梅邱峰, 张飞燕, 王宁, 等. 二氧化钛基Z型异质结光催化剂[J]. 无机化学学报, 2019, 35(8): 1321-1339. doi: 10.11862/CJIC.2019.167 MEI Q F, ZHANG F Y, WANG N, et al. Photocatalysts: Z-scheme heterojunction constructed with titanium dioxide[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(8): 1321-1339 (in Chinese). doi: 10.11862/CJIC.2019.167
[17] 杨传玺, 王小宁, 杨帅, 等. 纳米二氧化钛光催化及其降解印染废水研究进展[J]. 应用化工, 2017, 46(6): 1185-1189. doi: 10.3969/j.issn.1671-3206.2017.06.037 YANG C X, WANG X N, YANG S, et al. Research on nano-TiO2 photocatalysis and degradation of dyeing wastewater[J]. Applied Chemical Industry, 2017, 46(6): 1185-1189 (in Chinese). doi: 10.3969/j.issn.1671-3206.2017.06.037
[18] LI R Z, CHEN H Y, XIONG J R, et al. A mini review on bismuth-based Z-scheme photocatalysts[J]. Materials, 2020, 13(22): 5057. doi: 10.3390/ma13225057 [19] 蔡锦璐. TiO2/C复合材料及光催化降解染料性能研究. [D]南昌:江西科技师范大学, 2020. CAI J L. Study on the photocatalytic degradation of dyes over the TiO2/C composites. [D]Nanchang: Jiangxi Science and Technology Normal University, 2022.
[20] 赵巾巾. 光催化技术在环境治理方面的研究概述[J]. 山西化工, 2020, 40(1): 24-25,30. ZHAO J J. Overview of research on photocatalysis technology in environmental governance[J]. Shanxi Chemical Industry, 2020, 40(1): 24-25,30 (in Chinese).
[21] KUMAR A, RAIZADA P, SINGH P, et al. Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification[J]. Chemical Engineering Journal, 2020, 391: 123496. doi: 10.1016/j.cej.2019.123496 [22] STELO F, KUBLIK N, ULLAH S, et al. Recent advances in Bi2MoO6 based Z-scheme heterojunctions for photocatalytic degradation of pollutants[J]. Journal of Alloys and Compounds, 2020, 829: 154591. doi: 10.1016/j.jallcom.2020.154591 [23] YANG Y, MA S C, QU J P, et al. Transforming type-Ⅱ Fe2O3@polypyrrole to Z-scheme Fe2O3@polypyrrole/Prussian blue via Prussian blue as bridge: Enhanced activity in photo-Fenton reaction and mechanism insight[J]. Journal of Hazardous Materials, 2021, 405: 124668. doi: 10.1016/j.jhazmat.2020.124668 [24] SHI L, LI Z, MARCUS K, et al. Integration of Au nanoparticles with a g-C3N4 based heterostructure: Switching charge transfer from type-II to Z-scheme for enhanced visible light photocatalysis[J]. Chemical Communications, 2018, 54(30): 3747-3750. doi: 10.1039/C8CC01370E [25] GÜRSES A, AÇIKYILDIZ M, GÜNEŞ K, et al. Classification of dye and pigments[J]. Dyes and pigments, 2016: 31-45. [26] ZENG Q Q, LIU Y, SHEN L G, et al. Facile preparation of recyclable magnetic Ni@filter paper composite materials for efficient photocatalytic degradation of methyl orange[J]. Journal of Colloid and Interface Science, 2021, 582(Pt A): 291-300. [27] ZHAO G Q, LI C F, WU X, et al. Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue[J]. Applied Surface Science, 2018, 434: 251-259. doi: 10.1016/j.apsusc.2017.10.181 [28] JING Y J, KANG L. RETRACTED: CdS nanoparticles decorated Ag2WO4 nanorods for increased photocatalytic performance and stability under visible light irradiation[J]. Ceramics International, 2020, 46(11): 18826-18831. doi: 10.1016/j.ceramint.2020.04.200 [29] HUO P P, ZHAO P, SHI X B, et al. Enhanced photocatalytic performance of electrospun hollow titanium dioxide nanofibers decorated with graphene quantum dots[J]. Journal of Materials Science, 2021, 56(3): 2138-2149. doi: 10.1007/s10853-020-05352-5 [30] WANG J, WANG G H, WEI X H, et al. ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB[J]. Applied Surface Science, 2018, 456: 666-675. doi: 10.1016/j.apsusc.2018.06.182 [31] ZHANG P, ZHANG L N, DONG E L, et al. Synthesis of CaIn2S4/TiO2 heterostructures for enhanced UV-visible light photocatalytic activity[J]. Journal of Alloys and Compounds, 2021, 885: 161027. doi: 10.1016/j.jallcom.2021.161027 [32] SHEN W J, LI N, ZUO S X, et al. Remarkably enhanced piezo-photocatalytic performance of Z-scheme Bi2WO6/Black TiO2 heterojunction via piezoelectric effect[J]. Ceramics International, 2022, 48(11): 15899-15907. doi: 10.1016/j.ceramint.2022.02.130 [33] DRMOSH Q A, HEZAM A, HENDI A H Y, et al. Ternary Bi2S3/MoS2/TiO2 with double Z-scheme configuration as high performance photocatalyst[J]. Applied Surface Science, 2020, 499: 143938. doi: 10.1016/j.apsusc.2019.143938 [34] HAN X P, YAO B H, LI K Y, et al. Preparation and photocatalytic performances of WO3/TiO2 composite nanofibers[J]. Journal of Chemistry, 2020, 2020: 1-12. [35] CUI G Y, ZHANG W, YANG J M. Selective adsorptive removal of anionic dyes from aqueous solutions using MIL-101@GO: Effect of GO[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 667: 131364. doi: 10.1016/j.colsurfa.2023.131364 [36] XIAO Z Y, WU R, SHU T T, et al. Synthesis of Co-doped Fe metal-organic framework MIL-101(Fe, Co) and efficient degradation of organic dyes in water[J]. Separation and Purification Technology, 2023, 304: 122300. doi: 10.1016/j.seppur.2022.122300 [37] CHEN Y, LIU H, HU L, et al. Highly efficient visible-light photocatalytic performance of MOFs-derived TiO2 via heterojunction construction and oxygen vacancy engineering[J]. Chemical Physics Letters, 2023, 815: 140365. doi: 10.1016/j.cplett.2023.140365 [38] JIA J, WANG Y M, XU M L, et al. MOF-derived the direct Z-scheme g-C3N4/TiO2 with enhanced visible photocatalytic activity[J]. Journal of Sol-Gel Science and Technology, 2020, 93(1): 123-130. doi: 10.1007/s10971-019-05172-3 [39] ZENG T Y, SHI D J, CHENG Q R, et al. Construction of novel phosphonate-based MOF/P-TiO2 heterojunction photocatalysts: Enhanced photocatalytic performance and mechanistic insight[J]. Environmental Science:Nano, 2020, 7(3): 861-879. doi: 10.1039/C9EN01180C [40] LEI W J, WANG H, ZHANG X J, et al. Cu2O-based binary and ternary photocatalysts for the degradation of organic dyes under visible light[J]. Ceramics International, 2022, 48(2): 1757-1764. doi: 10.1016/j.ceramint.2021.09.255 [41] DUAN J H, ZHAO H, ZHANG Z S, et al. The Z-scheme heterojunction between TiO2 nanotubes and Cu2O nanoparticles mediated by Ag nanoparticles for enhanced photocatalytic stability and activity under visible light[J]. Ceramics International, 2018, 44(18): 22748-22759. doi: 10.1016/j.ceramint.2018.09.062 [42] YU X J, QIU H R, WANG B, et al. A ternary photocatalyst of all-solid-state Z-scheme TiO2-Au-BiOBr for efficiently degrading various dyes[J]. Journal of Alloys and Compounds, 2020, 839: 155597. doi: 10.1016/j.jallcom.2020.155597 [43] BALU S, VELMURUGAN S, PALANISAMY S, et al. Synthesis of α-Fe2O3 decorated g-C3N4/ZnO ternary Z-scheme photocatalyst for degradation of tartrazine dye in aqueous media[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 258-267. doi: 10.1016/j.jtice.2019.03.011 [44] HU C, CHEN F, WANG Y G, et al. Exceptional cocatalyst-free photo-enhanced piezocatalytic hydrogen evolution of carbon nitride nanosheets from strong In-plane polarization[J]. Advanced Materials, 2021, 33(24): 2101751. doi: 10.1002/adma.202101751 [45] LEE Y J, JEONG Y J, CHO I S, et al. Facile synthesis of N vacancy g-C3N4 using Mg-induced defect on the amine groups for enhanced photocatalytic •OH generation[J]. Journal of Hazardous Materials, 2023, 449: 131046. doi: 10.1016/j.jhazmat.2023.131046 [46] LIU X, JIN A L, JIA Y S, et al. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4[J]. Applied Surface Science, 2017, 405: 359-371. doi: 10.1016/j.apsusc.2017.02.025 [47] ZHANG J Y, MEI J Y, YI S S, et al. Constructing of Z-scheme 3D g-C3N4-ZnO@graphene aerogel heterojunctions for high-efficient adsorption and photodegradation of organic pollutants[J]. Applied Surface Science, 2019, 492: 808-817. doi: 10.1016/j.apsusc.2019.06.261 [48] HUANG Z, JIA S, WEI J, et al. A visible light active, carbon-nitrogen-sulfur co-doped TiO2/g-C3N4 Z-scheme heterojunction as an effective photocatalyst to remove dye pollutants[J]. RSC Advances, 2021, 11(27): 16747-16754. doi: 10.1039/D1RA01890F [49] GUO X L, DUAN J H, LI C J, et al. Highly efficient Z-scheme g-C3N4/ZnO photocatalysts constructed by co-melting-recrystallizing mixed precursors for wastewater treatment[J]. Journal of Materials Science, 2020, 55(5): 2018-2031. doi: 10.1007/s10853-019-04097-0 [50] ZHANG X F, JIA X B, DUAN P Z, et al. V2O5/P-g-C3N4 Z-scheme enhanced heterogeneous photocatalytic removal of methyl orange from water under visible light irradiation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 608: 125580. doi: 10.1016/j.colsurfa.2020.125580 [51] ZHAO X, ZHANG X J, ZHAO B L, et al. A direct oxygen vacancy essential Z-scheme C@Ti4O7/g-C3N4 heterojunctions for visible-light degradation towards environmental dye pollutants[J]. Applied Surface Science, 2020, 525: 146486. doi: 10.1016/j.apsusc.2020.146486 [52] 郭莉, 张开来, 张鑫, 等. g-C3N4量子点修饰球形Bi2WO6及其光催化活性增强机制[J]. 材料工程, 2019, 47(11): 128-134. doi: 10.11868/j.issn.1001-4381.2018.000459 GUO L, ZHANG K L, ZHANG X, et al. G-C3N4 quantum dots decorated spherical Bi2WO6 photocatalyst and its enhanced photocatalytic activities mechanism[J]. Journal of Materials Engineering, 2019, 47(11): 128-134 (in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000459
[53] JIN S N, ZHAO H C, XU N, et al. Z-scheme mpg-C3N4/Ag6Si2O7 heterojunction for highly efficient photocatalytic degradation of organic pollutants under visible light[J]. Journal of Alloys and Compounds, 2019, 803: 834-843. doi: 10.1016/j.jallcom.2019.06.350 [54] ZHANG Q, LIU M, LIU S J, et al. Z-scheme g-C3N4/BiVO4 photocatalysts with RGO as electron transport accelerator[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(1): 667-676. doi: 10.1007/s10854-019-02573-6 [55] DING M, ZHOU J J, YANG H C, et al. Synthesis of Z-scheme g-C3N4 nanosheets/Ag3PO4 photocatalysts with enhanced visible-light photocatalytic performance for the degradation of tetracycline and dye[J]. Chinese Chemical Letters, 2020, 31(1): 71-76. doi: 10.1016/j.cclet.2019.05.029 [56] GEBRESLASSIE G, BHARALI P, CHANDRA U, et al. Hydrothermal synthesis of g-C3N4/NiFe2O4 nanocomposite and its enhanced photocatalytic activity[J]. Applied Organometallic Chemistry, 2019, 33(8): e5002. doi: 10.1002/aoc.5002 [57] YAN Y X, YANG H, YI Z, et al. Design of ternary CaTiO3/g-C3N4/AgBr Z-scheme heterostructured photocatalysts and their application for dye photodegradation[J]. Solid State Sciences, 2020, 100: 106102. doi: 10.1016/j.solidstatesciences.2019.106102 [58] LIU F, NGUYEN T P, WANG Q, et al. Construction of Z-scheme g-C3N4/Ag/P3HT heterojunction for enhanced visible-light photocatalytic degradation of tetracycline (TC) and methyl orange (MO)[J]. Applied Surface Science, 2019, 496: 143653. doi: 10.1016/j.apsusc.2019.143653 [59] JIANG T G, WANG K, GUO T, et al. Fabrication of Z-scheme MoO3/Bi2O4 heterojunction photocatalyst with enhanced photocatalytic performance under visible light irradiation[J]. Chinese Journal of Catalysis, 2020, 41(1): 161-169. doi: 10.1016/S1872-2067(19)63391-7 [60] YU C F, WANG K, YANG P Y, et al. One-pot facile synthesis of Bi2S3/SnS2/Bi2O3 ternary heterojunction as advanced double Z-scheme photocatalytic system for efficient dye removal under sunlight irradiation[J]. Applied Surface Science, 2017, 420: 233-242. doi: 10.1016/j.apsusc.2017.05.147 [61] TAO X P, ZHOU H P, ZHANG C B, et al. Triclinic-phase bismuth chromate: A promising candidate for photocatalytic water splitting with broad spectrum ranges[J]. Advanced Materials, 2023, 35(15): 2211182. [62] MA F Y, YANG Q L, WANG Z J, et al. Enhanced visible-light photocatalytic activity and photostability of Ag3PO4/Bi2WO6 heterostructures toward organic pollutant degradation and plasmonic Z-scheme mechanism[J]. RSC Advances, 2018, 8(28): 15853-15862. doi: 10.1039/C8RA01477A [63] ZHANG Y, JU P, HAO L, et al. Novel Z-scheme MoS2/Bi2WO6 heterojunction with highly enhanced photocatalytic activity under visible light irradiation[J]. Journal of Alloys and Compounds, 2021, 854: 157224. doi: 10.1016/j.jallcom.2020.157224 [64] ZHANG R, ZHANG T Q, ZHAO C, et al. A novel Z-scheme Bi2WO6-based photocatalyst with enhanced dye degradation activity[J]. Journal of Nanoparticle Research, 2019, 21(9): 203. doi: 10.1007/s11051-019-4652-9 [65] GUO J H, SHI L, ZHAO J Y, et al. Enhanced visible-light photocatalytic activity of Bi2MoO6 nanoplates with heterogeneous Bi2MoO6-x@Bi2MoO6 core-shell structure[J]. Applied Catalysis B:Environmental, 2018, 224: 692-704. doi: 10.1016/j.apcatb.2017.11.030 [66] ZHU P F, CHEN Y J, DUAN M, et al. Construction and mechanism of a highly efficient and stable Z-scheme Ag3PO4/reduced graphene oxide/Bi2MoO6 visible-light photocatalyst[J]. Catalysis Science & Technology, 2018, 8(15): 3818-3832. [67] SALARI H, YAGHMAEI H. Z-scheme 3D Bi2WO6/MnO2 heterojunction for increased photoinduced charge separation and enhanced photocatalytic activity[J]. Applied Surface Science, 2020, 532: 147413. doi: 10.1016/j.apsusc.2020.147413 [68] GUO Y M, WANG R Q, WEI C W, et al. Carbon quantum dots for fluorescent detection of nitrite: A review[J]. Food Chemistry, 2023, 415: 135749. doi: 10.1016/j.foodchem.2023.135749 [69] DAI G A, WANG L, CHENG S J, et al. Perovskite quantum dots based optical fabry–Pérot pressure sensor[J]. ACS Photonics, 2020, 7(9): 2390-2394. doi: 10.1021/acsphotonics.0c01109 [70] JIANG M T, YANG Q, XU J L, et al. Monolithically integrated PbS colloidal quantum dot photodetector crossbar array for short-wavelength infrared imaging[J]. Advanced Optical Materials, 2023, 11(14): 2202990. doi: 10.1002/adom.202202990 [71] XUE R T, GE P, XIE J, et al. Controllable CO2 reduction or hydrocarbon oxidation driven by entire solar via silver quantum dots direct photocatalysis[J]. Small, 2023, 19(20): 2207234. doi: 10.1002/smll.202207234 [72] LI M R, SONG C, WU Y, et al. Novel Z-scheme visible-light photocatalyst based on CoFe2O4/BiOBr/Graphene composites for organic dye degradation and Cr(VI) reduction[J]. Applied Surface Science, 2019, 478: 744-753. doi: 10.1016/j.apsusc.2019.02.017 [73] TANG H Q, DENG Y H, ZOU H, et al. Synthesis of Z-scheme CuInS2@BiOBr heterojunction composite with visible-light activity[J]. ChemistrySelect, 2020, 5(27): 8258-8264. doi: 10.1002/slct.202002008 [74] ZHANG T T, WANG X H, SUN Z, et al. Constructing Z-scheme based BiOI/CdS heterojunction with efficient visible-light photocatalytic dye degradation[J]. Solid State Sciences, 2020, 107: 106350. doi: 10.1016/j.solidstatesciences.2020.106350 [75] LIANG Q, CUI S N, JIN J, et al. Fabrication of BiOI@UIO-66(NH2)@g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity[J]. Applied Surface Science, 2018, 456: 899-907. doi: 10.1016/j.apsusc.2018.06.173 [76] OU M, NIE H Y, ZHONG Q, et al. Controllable synthesis of 3D BiVO4 superstructures with visible-light-induced photocatalytic oxidation of NO in the gas phase and mechanistic analysis[J]. Physical Chemistry Chemical Physics:PCCP, 2015, 17(43): 28809-28817. doi: 10.1039/C5CP04730G [77] LIU W, QIAN J Y, CAO X Y, et al. Research progress on M/BiVO4 (M=Ag、Au、Pt) composite material[J]. New Chemical Materials, 2020, 48(10): 25-29,34. [78] ULLAH S, KHAN A A, JAN A, et al. Enhanced photoactivity of BiVO4/Ag/Ag2O Z-scheme photocatalyst for efficient environmental remediation under natural sunlight and low-cost LED illumination[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 600: 124946. doi: 10.1016/j.colsurfa.2020.124946 [79] LIN Y, PAN D M, LUO H. Hollow direct Z-Scheme CdS/BiVO4 composite with boosted photocatalytic performance for RhB degradation and hydrogen production[J]. Materials Science in Semiconductor Processing, 2021, 121: 105453. doi: 10.1016/j.mssp.2020.105453 [80] WANG Q Y, ZHAO Y H, ZHANG Z F, et al. Facile synthesis of Bi2WO6/Bi2MoO6 Z-scheme heterojunction for dye degradation and Cr(VI) reduction[J]. Journal of Molecular Liquids, 2023, 383: 122164. doi: 10.1016/j.molliq.2023.122164 [81] SI Y S, CHEN Y Y, XU M, et al. Synthesis and characterization of Z-scheme Ag2WO4/Bi2MoO6 heterojunction photocatalyst: Enhanced visible-light photodegradation of organic pollutant[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(2): 1191-1199. doi: 10.1007/s10854-019-02630-0