[1] KHALILOVA H K, HASANOVA S A, ALIYEV F G, et al. Photocatalytic removal of organic pollutants from industrial wastewater using TiO2 catalyst[J]. Journal of Environmental Protection, 2018, 9(6): 691-698. doi: 10.4236/jep.2018.96043
[2] AHUJA P, UJJAIN S K, KANOJIA R, et al. Transition metal oxides and their composites for photocatalytic dye degradation[J]. Journal of Composites Science, 2021, 5(3): 82. doi: 10.3390/jcs5030082
[3] ZHOU Y B, LU J, ZHOU Y, et al. Recent advances for dyes removal using novel adsorbents: A review[J]. Environmental Pollution, 2019, 252(Pt A): 352-365.
[4] ABDI J, VOSSOUGHI M, MAHMOODI N M, et al. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal[J]. Chemical Engineering Journal, 2017, 326: 1145-1158. doi: 10.1016/j.cej.2017.06.054
[5] YUE H D, HANG M T, ZHENG M T, et al. Study on preparation of new type amino rare earth metal-organic framework material and photocatalytic degradation of organic dyes[J]. New Chemical Materials, 2021, 1-8.
[6] PEERAKIATKHAJOHN P, BUTBUREE T, SUL J H, et al. Efficient and rapid photocatalytic degradation of methyl orange dye using Al/ZnO nanoparticles[J]. Nanomaterials, 2021, 11(4): 1059. doi: 10.3390/nano11041059
[7] HUANG Z H, LI Y Z, CHEN W J, et al. Modified bentonite adsorption of organic pollutants of dye wastewater[J]. Materials Chemistry and Physics, 2017, 202: 266-276. doi: 10.1016/j.matchemphys.2017.09.028
[8] ZHOU L, ZHOU H J, YANG X Y. Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment[J]. Separation and Purification Technology, 2019, 210: 93-99. doi: 10.1016/j.seppur.2018.07.089
[9] MUSTAFA G, TARIQ ZAHID M, ALI S, et al. Biodegradation and discoloration of disperse blue-284 textile dye by Klebsiella pneumoniae GM-04 bacterial isolate[J]. Journal of King Saud University - Science, 2021, 33(4): 101442. doi: 10.1016/j.jksus.2021.101442
[10] SOTO D, LEÓN O, MUÑOZ-BONILLA A, et al. Succinylated starches for dye removal[J]. Starch - Stä rke, 2021, 73(1/2): 2000043.
[11] 杨烨鹏, 李懿舟, 王家强, 等. 光催化技术在处理废水中的规模化应用[J]. 云南大学学报(自然科学版), 2019, 41(3): 565-571. YANG Y P, LI Y Z, WANG J Q, et al. scale-up photocatalytic treatment of wastewater[J]. Journal of Yunnan University (Natural Sciences Edition), 2019, 41(3): 565-571 (in Chinese).
[12] SU Y M, YU X, FU X H, et al. Embedding Ag nanoparticles to construct BiOI/Ag/PANI with enhanced photoelectrocatalytic activity: A demonstration of the switch from type-Ⅱ to Z-scheme[J]. Electrochimica Acta, 2020, 344: 136144. doi: 10.1016/j.electacta.2020.136144
[13] ZHANG M F, ZHANG Z M, JIA J W, et al. Research progress in the design, fabrication and application of Z-scheme heterojunction photocatalysts[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 18-32.
[14] ZHAO Z, XING Y B, LI H B, et al. Constructing CdS/Cd/doped TiO2 Z-scheme type visible light photocatalyst for H2 production[J]. Science China Materials, 2018, 61(6): 851-860. doi: 10.1007/s40843-017-9170-6
[15] LI Y F, ZHOU M H, CHENG B, et al. Recent advances in g-C3N4-based heterojunction photocatalysts[J]. Journal of Materials Science & Technology, 2020, 56: 1-17.
[16] 梅邱峰, 张飞燕, 王宁, 等. 二氧化钛基Z型异质结光催化剂[J]. 无机化学学报, 2019, 35(8): 1321-1339. doi: 10.11862/CJIC.2019.167 MEI Q F, ZHANG F Y, WANG N, et al. Photocatalysts: Z-scheme heterojunction constructed with titanium dioxide[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(8): 1321-1339 (in Chinese). doi: 10.11862/CJIC.2019.167
[17] 杨传玺, 王小宁, 杨帅, 等. 纳米二氧化钛光催化及其降解印染废水研究进展[J]. 应用化工, 2017, 46(6): 1185-1189. doi: 10.3969/j.issn.1671-3206.2017.06.037 YANG C X, WANG X N, YANG S, et al. Research on nano-TiO2 photocatalysis and degradation of dyeing wastewater[J]. Applied Chemical Industry, 2017, 46(6): 1185-1189 (in Chinese). doi: 10.3969/j.issn.1671-3206.2017.06.037
[18] LI R Z, CHEN H Y, XIONG J R, et al. A mini review on bismuth-based Z-scheme photocatalysts[J]. Materials, 2020, 13(22): 5057. doi: 10.3390/ma13225057
[19] 蔡锦璐. TiO2/C复合材料及光催化降解染料性能研究. [D]南昌:江西科技师范大学, 2020. CAI J L. Study on the photocatalytic degradation of dyes over the TiO2/C composites. [D]Nanchang: Jiangxi Science and Technology Normal University, 2022.
[20] 赵巾巾. 光催化技术在环境治理方面的研究概述[J]. 山西化工, 2020, 40(1): 24-25,30. ZHAO J J. Overview of research on photocatalysis technology in environmental governance[J]. Shanxi Chemical Industry, 2020, 40(1): 24-25,30 (in Chinese).
[21] KUMAR A, RAIZADA P, SINGH P, et al. Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification[J]. Chemical Engineering Journal, 2020, 391: 123496. doi: 10.1016/j.cej.2019.123496
[22] STELO F, KUBLIK N, ULLAH S, et al. Recent advances in Bi2MoO6 based Z-scheme heterojunctions for photocatalytic degradation of pollutants[J]. Journal of Alloys and Compounds, 2020, 829: 154591. doi: 10.1016/j.jallcom.2020.154591
[23] YANG Y, MA S C, QU J P, et al. Transforming type-Ⅱ Fe2O3@polypyrrole to Z-scheme Fe2O3@polypyrrole/Prussian blue via Prussian blue as bridge: Enhanced activity in photo-Fenton reaction and mechanism insight[J]. Journal of Hazardous Materials, 2021, 405: 124668. doi: 10.1016/j.jhazmat.2020.124668
[24] SHI L, LI Z, MARCUS K, et al. Integration of Au nanoparticles with a g-C3N4 based heterostructure: Switching charge transfer from type-II to Z-scheme for enhanced visible light photocatalysis[J]. Chemical Communications, 2018, 54(30): 3747-3750. doi: 10.1039/C8CC01370E
[25] GÜRSES A, AÇIKYILDIZ M, GÜNEŞ K, et al. Classification of dye and pigments[J]. Dyes and pigments, 2016: 31-45.
[26] ZENG Q Q, LIU Y, SHEN L G, et al. Facile preparation of recyclable magnetic Ni@filter paper composite materials for efficient photocatalytic degradation of methyl orange[J]. Journal of Colloid and Interface Science, 2021, 582(Pt A): 291-300.
[27] ZHAO G Q, LI C F, WU X, et al. Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue[J]. Applied Surface Science, 2018, 434: 251-259. doi: 10.1016/j.apsusc.2017.10.181
[28] JING Y J, KANG L. RETRACTED: CdS nanoparticles decorated Ag2WO4 nanorods for increased photocatalytic performance and stability under visible light irradiation[J]. Ceramics International, 2020, 46(11): 18826-18831. doi: 10.1016/j.ceramint.2020.04.200
[29] HUO P P, ZHAO P, SHI X B, et al. Enhanced photocatalytic performance of electrospun hollow titanium dioxide nanofibers decorated with graphene quantum dots[J]. Journal of Materials Science, 2021, 56(3): 2138-2149. doi: 10.1007/s10853-020-05352-5
[30] WANG J, WANG G H, WEI X H, et al. ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB[J]. Applied Surface Science, 2018, 456: 666-675. doi: 10.1016/j.apsusc.2018.06.182
[31] ZHANG P, ZHANG L N, DONG E L, et al. Synthesis of CaIn2S4/TiO2 heterostructures for enhanced UV-visible light photocatalytic activity[J]. Journal of Alloys and Compounds, 2021, 885: 161027. doi: 10.1016/j.jallcom.2021.161027
[32] SHEN W J, LI N, ZUO S X, et al. Remarkably enhanced piezo-photocatalytic performance of Z-scheme Bi2WO6/Black TiO2 heterojunction via piezoelectric effect[J]. Ceramics International, 2022, 48(11): 15899-15907. doi: 10.1016/j.ceramint.2022.02.130
[33] DRMOSH Q A, HEZAM A, HENDI A H Y, et al. Ternary Bi2S3/MoS2/TiO2 with double Z-scheme configuration as high performance photocatalyst[J]. Applied Surface Science, 2020, 499: 143938. doi: 10.1016/j.apsusc.2019.143938
[34] HAN X P, YAO B H, LI K Y, et al. Preparation and photocatalytic performances of WO3/TiO2 composite nanofibers[J]. Journal of Chemistry, 2020, 2020: 1-12.
[35] CUI G Y, ZHANG W, YANG J M. Selective adsorptive removal of anionic dyes from aqueous solutions using MIL-101@GO: Effect of GO[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 667: 131364. doi: 10.1016/j.colsurfa.2023.131364
[36] XIAO Z Y, WU R, SHU T T, et al. Synthesis of Co-doped Fe metal-organic framework MIL-101(Fe, Co) and efficient degradation of organic dyes in water[J]. Separation and Purification Technology, 2023, 304: 122300. doi: 10.1016/j.seppur.2022.122300
[37] CHEN Y, LIU H, HU L, et al. Highly efficient visible-light photocatalytic performance of MOFs-derived TiO2 via heterojunction construction and oxygen vacancy engineering[J]. Chemical Physics Letters, 2023, 815: 140365. doi: 10.1016/j.cplett.2023.140365
[38] JIA J, WANG Y M, XU M L, et al. MOF-derived the direct Z-scheme g-C3N4/TiO2 with enhanced visible photocatalytic activity[J]. Journal of Sol-Gel Science and Technology, 2020, 93(1): 123-130. doi: 10.1007/s10971-019-05172-3
[39] ZENG T Y, SHI D J, CHENG Q R, et al. Construction of novel phosphonate-based MOF/P-TiO2 heterojunction photocatalysts: Enhanced photocatalytic performance and mechanistic insight[J]. Environmental Science:Nano, 2020, 7(3): 861-879. doi: 10.1039/C9EN01180C
[40] LEI W J, WANG H, ZHANG X J, et al. Cu2O-based binary and ternary photocatalysts for the degradation of organic dyes under visible light[J]. Ceramics International, 2022, 48(2): 1757-1764. doi: 10.1016/j.ceramint.2021.09.255
[41] DUAN J H, ZHAO H, ZHANG Z S, et al. The Z-scheme heterojunction between TiO2 nanotubes and Cu2O nanoparticles mediated by Ag nanoparticles for enhanced photocatalytic stability and activity under visible light[J]. Ceramics International, 2018, 44(18): 22748-22759. doi: 10.1016/j.ceramint.2018.09.062
[42] YU X J, QIU H R, WANG B, et al. A ternary photocatalyst of all-solid-state Z-scheme TiO2-Au-BiOBr for efficiently degrading various dyes[J]. Journal of Alloys and Compounds, 2020, 839: 155597. doi: 10.1016/j.jallcom.2020.155597
[43] BALU S, VELMURUGAN S, PALANISAMY S, et al. Synthesis of α-Fe2O3 decorated g-C3N4/ZnO ternary Z-scheme photocatalyst for degradation of tartrazine dye in aqueous media[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 258-267. doi: 10.1016/j.jtice.2019.03.011
[44] HU C, CHEN F, WANG Y G, et al. Exceptional cocatalyst-free photo-enhanced piezocatalytic hydrogen evolution of carbon nitride nanosheets from strong In-plane polarization[J]. Advanced Materials, 2021, 33(24): 2101751. doi: 10.1002/adma.202101751
[45] LEE Y J, JEONG Y J, CHO I S, et al. Facile synthesis of N vacancy g-C3N4 using Mg-induced defect on the amine groups for enhanced photocatalytic •OH generation[J]. Journal of Hazardous Materials, 2023, 449: 131046. doi: 10.1016/j.jhazmat.2023.131046
[46] LIU X, JIN A L, JIA Y S, et al. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4[J]. Applied Surface Science, 2017, 405: 359-371. doi: 10.1016/j.apsusc.2017.02.025
[47] ZHANG J Y, MEI J Y, YI S S, et al. Constructing of Z-scheme 3D g-C3N4-ZnO@graphene aerogel heterojunctions for high-efficient adsorption and photodegradation of organic pollutants[J]. Applied Surface Science, 2019, 492: 808-817. doi: 10.1016/j.apsusc.2019.06.261
[48] HUANG Z, JIA S, WEI J, et al. A visible light active, carbon-nitrogen-sulfur co-doped TiO2/g-C3N4 Z-scheme heterojunction as an effective photocatalyst to remove dye pollutants[J]. RSC Advances, 2021, 11(27): 16747-16754. doi: 10.1039/D1RA01890F
[49] GUO X L, DUAN J H, LI C J, et al. Highly efficient Z-scheme g-C3N4/ZnO photocatalysts constructed by co-melting-recrystallizing mixed precursors for wastewater treatment[J]. Journal of Materials Science, 2020, 55(5): 2018-2031. doi: 10.1007/s10853-019-04097-0
[50] ZHANG X F, JIA X B, DUAN P Z, et al. V2O5/P-g-C3N4 Z-scheme enhanced heterogeneous photocatalytic removal of methyl orange from water under visible light irradiation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 608: 125580. doi: 10.1016/j.colsurfa.2020.125580
[51] ZHAO X, ZHANG X J, ZHAO B L, et al. A direct oxygen vacancy essential Z-scheme C@Ti4O7/g-C3N4 heterojunctions for visible-light degradation towards environmental dye pollutants[J]. Applied Surface Science, 2020, 525: 146486. doi: 10.1016/j.apsusc.2020.146486
[52] 郭莉, 张开来, 张鑫, 等. g-C3N4量子点修饰球形Bi2WO6及其光催化活性增强机制[J]. 材料工程, 2019, 47(11): 128-134. doi: 10.11868/j.issn.1001-4381.2018.000459 GUO L, ZHANG K L, ZHANG X, et al. G-C3N4 quantum dots decorated spherical Bi2WO6 photocatalyst and its enhanced photocatalytic activities mechanism[J]. Journal of Materials Engineering, 2019, 47(11): 128-134 (in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000459
[53] JIN S N, ZHAO H C, XU N, et al. Z-scheme mpg-C3N4/Ag6Si2O7 heterojunction for highly efficient photocatalytic degradation of organic pollutants under visible light[J]. Journal of Alloys and Compounds, 2019, 803: 834-843. doi: 10.1016/j.jallcom.2019.06.350
[54] ZHANG Q, LIU M, LIU S J, et al. Z-scheme g-C3N4/BiVO4 photocatalysts with RGO as electron transport accelerator[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(1): 667-676. doi: 10.1007/s10854-019-02573-6
[55] DING M, ZHOU J J, YANG H C, et al. Synthesis of Z-scheme g-C3N4 nanosheets/Ag3PO4 photocatalysts with enhanced visible-light photocatalytic performance for the degradation of tetracycline and dye[J]. Chinese Chemical Letters, 2020, 31(1): 71-76. doi: 10.1016/j.cclet.2019.05.029
[56] GEBRESLASSIE G, BHARALI P, CHANDRA U, et al. Hydrothermal synthesis of g-C3N4/NiFe2O4 nanocomposite and its enhanced photocatalytic activity[J]. Applied Organometallic Chemistry, 2019, 33(8): e5002. doi: 10.1002/aoc.5002
[57] YAN Y X, YANG H, YI Z, et al. Design of ternary CaTiO3/g-C3N4/AgBr Z-scheme heterostructured photocatalysts and their application for dye photodegradation[J]. Solid State Sciences, 2020, 100: 106102. doi: 10.1016/j.solidstatesciences.2019.106102
[58] LIU F, NGUYEN T P, WANG Q, et al. Construction of Z-scheme g-C3N4/Ag/P3HT heterojunction for enhanced visible-light photocatalytic degradation of tetracycline (TC) and methyl orange (MO)[J]. Applied Surface Science, 2019, 496: 143653. doi: 10.1016/j.apsusc.2019.143653
[59] JIANG T G, WANG K, GUO T, et al. Fabrication of Z-scheme MoO3/Bi2O4 heterojunction photocatalyst with enhanced photocatalytic performance under visible light irradiation[J]. Chinese Journal of Catalysis, 2020, 41(1): 161-169. doi: 10.1016/S1872-2067(19)63391-7
[60] YU C F, WANG K, YANG P Y, et al. One-pot facile synthesis of Bi2S3/SnS2/Bi2O3 ternary heterojunction as advanced double Z-scheme photocatalytic system for efficient dye removal under sunlight irradiation[J]. Applied Surface Science, 2017, 420: 233-242. doi: 10.1016/j.apsusc.2017.05.147
[61] TAO X P, ZHOU H P, ZHANG C B, et al. Triclinic-phase bismuth chromate: A promising candidate for photocatalytic water splitting with broad spectrum ranges[J]. Advanced Materials, 2023, 35(15): 2211182.
[62] MA F Y, YANG Q L, WANG Z J, et al. Enhanced visible-light photocatalytic activity and photostability of Ag3PO4/Bi2WO6 heterostructures toward organic pollutant degradation and plasmonic Z-scheme mechanism[J]. RSC Advances, 2018, 8(28): 15853-15862. doi: 10.1039/C8RA01477A
[63] ZHANG Y, JU P, HAO L, et al. Novel Z-scheme MoS2/Bi2WO6 heterojunction with highly enhanced photocatalytic activity under visible light irradiation[J]. Journal of Alloys and Compounds, 2021, 854: 157224. doi: 10.1016/j.jallcom.2020.157224
[64] ZHANG R, ZHANG T Q, ZHAO C, et al. A novel Z-scheme Bi2WO6-based photocatalyst with enhanced dye degradation activity[J]. Journal of Nanoparticle Research, 2019, 21(9): 203. doi: 10.1007/s11051-019-4652-9
[65] GUO J H, SHI L, ZHAO J Y, et al. Enhanced visible-light photocatalytic activity of Bi2MoO6 nanoplates with heterogeneous Bi2MoO6-x@Bi2MoO6 core-shell structure[J]. Applied Catalysis B:Environmental, 2018, 224: 692-704. doi: 10.1016/j.apcatb.2017.11.030
[66] ZHU P F, CHEN Y J, DUAN M, et al. Construction and mechanism of a highly efficient and stable Z-scheme Ag3PO4/reduced graphene oxide/Bi2MoO6 visible-light photocatalyst[J]. Catalysis Science & Technology, 2018, 8(15): 3818-3832.
[67] SALARI H, YAGHMAEI H. Z-scheme 3D Bi2WO6/MnO2 heterojunction for increased photoinduced charge separation and enhanced photocatalytic activity[J]. Applied Surface Science, 2020, 532: 147413. doi: 10.1016/j.apsusc.2020.147413
[68] GUO Y M, WANG R Q, WEI C W, et al. Carbon quantum dots for fluorescent detection of nitrite: A review[J]. Food Chemistry, 2023, 415: 135749. doi: 10.1016/j.foodchem.2023.135749
[69] DAI G A, WANG L, CHENG S J, et al. Perovskite quantum dots based optical fabry–Pérot pressure sensor[J]. ACS Photonics, 2020, 7(9): 2390-2394. doi: 10.1021/acsphotonics.0c01109
[70] JIANG M T, YANG Q, XU J L, et al. Monolithically integrated PbS colloidal quantum dot photodetector crossbar array for short-wavelength infrared imaging[J]. Advanced Optical Materials, 2023, 11(14): 2202990. doi: 10.1002/adom.202202990
[71] XUE R T, GE P, XIE J, et al. Controllable CO2 reduction or hydrocarbon oxidation driven by entire solar via silver quantum dots direct photocatalysis[J]. Small, 2023, 19(20): 2207234. doi: 10.1002/smll.202207234
[72] LI M R, SONG C, WU Y, et al. Novel Z-scheme visible-light photocatalyst based on CoFe2O4/BiOBr/Graphene composites for organic dye degradation and Cr(VI) reduction[J]. Applied Surface Science, 2019, 478: 744-753. doi: 10.1016/j.apsusc.2019.02.017
[73] TANG H Q, DENG Y H, ZOU H, et al. Synthesis of Z-scheme CuInS2@BiOBr heterojunction composite with visible-light activity[J]. ChemistrySelect, 2020, 5(27): 8258-8264. doi: 10.1002/slct.202002008
[74] ZHANG T T, WANG X H, SUN Z, et al. Constructing Z-scheme based BiOI/CdS heterojunction with efficient visible-light photocatalytic dye degradation[J]. Solid State Sciences, 2020, 107: 106350. doi: 10.1016/j.solidstatesciences.2020.106350
[75] LIANG Q, CUI S N, JIN J, et al. Fabrication of BiOI@UIO-66(NH2)@g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity[J]. Applied Surface Science, 2018, 456: 899-907. doi: 10.1016/j.apsusc.2018.06.173
[76] OU M, NIE H Y, ZHONG Q, et al. Controllable synthesis of 3D BiVO4 superstructures with visible-light-induced photocatalytic oxidation of NO in the gas phase and mechanistic analysis[J]. Physical Chemistry Chemical Physics:PCCP, 2015, 17(43): 28809-28817. doi: 10.1039/C5CP04730G
[77] LIU W, QIAN J Y, CAO X Y, et al. Research progress on M/BiVO4 (M=Ag、Au、Pt) composite material[J]. New Chemical Materials, 2020, 48(10): 25-29,34.
[78] ULLAH S, KHAN A A, JAN A, et al. Enhanced photoactivity of BiVO4/Ag/Ag2O Z-scheme photocatalyst for efficient environmental remediation under natural sunlight and low-cost LED illumination[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 600: 124946. doi: 10.1016/j.colsurfa.2020.124946
[79] LIN Y, PAN D M, LUO H. Hollow direct Z-Scheme CdS/BiVO4 composite with boosted photocatalytic performance for RhB degradation and hydrogen production[J]. Materials Science in Semiconductor Processing, 2021, 121: 105453. doi: 10.1016/j.mssp.2020.105453
[80] WANG Q Y, ZHAO Y H, ZHANG Z F, et al. Facile synthesis of Bi2WO6/Bi2MoO6 Z-scheme heterojunction for dye degradation and Cr(VI) reduction[J]. Journal of Molecular Liquids, 2023, 383: 122164. doi: 10.1016/j.molliq.2023.122164
[81] SI Y S, CHEN Y Y, XU M, et al. Synthesis and characterization of Z-scheme Ag2WO4/Bi2MoO6 heterojunction photocatalyst: Enhanced visible-light photodegradation of organic pollutant[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(2): 1191-1199. doi: 10.1007/s10854-019-02630-0