-
2022年,我国的皮革出口总额达
1075.3 亿美元,生产和贸易量均居世界首位[1]. 据统计,我国制革行业每年约排放出14亿t的含铬(Cr)废水[2],并产生约3.5万t的含铬污泥[3]. 目前对制革污泥的处理方法有填埋和焚烧等,其中填埋是最主要的处置方式[4]. 在美国和日本,约40%—60%的制革污泥是采用填埋的方式进行处理[5]. 然而,制革污泥中的Cr具有含量高、易迁移的特点,填埋场的防渗能力随着时间衰减可能发生含Cr渗滤液向堆场周边扩散,造成生态环境污染[6 − 7].制革污泥填埋场周边土壤和地下水的Cr污染严重,会发生深层迁移. 例如Guo和Ye等利用Hydrus-1D模型预测发现表层土壤中Cr会不断向下迁移,对土壤和地下水造成严重污染[8 − 9];土柱实验[10]也表明Cr会沿土壤剖面向深层地下环境运移,进而对周边环境造成潜在风险. 然而,目前针对制革污泥填埋场周边的环境影响和生态风险仍存在认识不深入,研究不系统等问题. 在河北省辛集市某皮革制造厂的污泥堆场中,污泥中的总Cr含量高达
20700 —21400 mg·kg−1 [11]. 环境中Cr并非处于静止状态,而是会随降水、土壤溶液和地下水等对流和扩散发生迁移. Cr的赋存形态随环境条件的变化而转变,如土壤中的无机矿物(如MnO2)可以将Cr(Ⅲ)氧化为Cr(Ⅵ),极大地提高Cr的迁移风险[12]. 此外,制革污泥中高有机质含量会促进污泥胶体颗粒对Cr的吸附,Cr还可与低分子可溶性有机酸形成配合物存在于土壤中,其溶解性和迁移能力显著提高[13]. 污泥胶体颗粒可以改变重金属形态、毒性和运移过程,有机/无机胶体可以通过吸附和共沉淀作用携带Cr在环境介质之间运移[14],扩大Cr污染范围,导致污泥堆场周边土壤、地表水及地下水环境的污染,威胁周边人居环境的生态安全.污泥胶体吸附Cr在环境介质中迁移的过程,可能与土壤颗粒、胶体、带电离子等物质发生交互作用,因此识别主要环境因子是研判土-水环境中Cr污染负荷及生态风险的关键. 一般情况下,微生物硝化作用使制革污泥在不受外界扰动的情况下呈弱酸性[11]. 制革污泥中除了含有大量的Cr外,还有Fe、Al、Ca等氧化物及氢氧化物形成的无机矿物胶体[15]. 赤铁矿(Hem)胶体在制革污泥中广泛存在,含量范围在8.3%—55%[11, 16]. Hem胶体在自然环境中通常携带正电荷,而Cr主要以带负电的CrO42−和Cr2O72−形式存在,因此两者间具有很强的亲和力[17],可以作为Cr有效载体[17]. 污泥中有机质(如腐殖酸(HA)等)的存在也会增加Cr(Ⅵ)的迁移风险[18,19]. 此外,腐殖酸表面带有可变电荷,具有比表面积大、物质活性高等特点,可显著影响Cr在胶体上的吸附行为[20]. 当污泥胶体协同Cr从有氧环境扩散至缺氧环境中,氧化还原条件也会影响胶体颗粒的形成、稳定性以及流动性[21]. 目前对污泥胶体协同污染运移过程研究多为单一要素对Cr迁移特性的影响,而对于多要素下Cr的环境风险研究相对缺乏[22].
本研究结合制革污泥酸性、Hem胶体和有机质含量高的特性,通过吸附批实验和柱迁移实验,探究Cr(Ⅵ)在Hem胶体上的吸附机制及在多孔介质中的迁移行为. 基于DLVO理论,探究Cr(Ⅵ)、HA、Hem在二元和三元体系中协同运移机制. 此次工作将为深入理解制革污泥场中Hem胶体和Cr(Ⅵ)协同运移过程奠定基础,也为制革污泥中污染物的防治提供科学依据.
酸性条件下饱和多孔介质中赤铁矿胶体和Cr(Ⅵ)的协同运移及影响机制
Co-transport and influence mechanism of hematite colloids and Cr(Ⅵ) in saturated porous media under acidic conditions
-
摘要: 含铬污泥的长时间填埋堆存可能对周边环境带来污染风险. 制革污泥中富含胶体物质和腐殖酸,有研究表明腐殖酸能通过吸附和静电作用影响胶体和Cr(Ⅵ)在多孔介质中的协同运移,使Cr(Ⅵ)向深层环境介质迁移. 然而,制革污泥中赤铁矿胶体等共存物质对Cr(Ⅵ)运移的影响尚不清楚. 本研究选取制革污泥中特征组分(赤铁矿胶体和腐殖酸),通过吸附实验和柱迁移实验等方法模拟酸性条件下,腐殖酸和Cr(Ⅵ)浓度对赤铁矿胶体稳定性和运移行为,探究赤铁矿胶体协同Cr(Ⅵ)运移的环境风险. 结果表明,赤铁矿胶体对Cr(Ⅵ)的最大吸附量为2.72 mg·g−1;Cr(Ⅵ)浓度越高,赤铁矿胶体聚集越明显,腐殖酸能够有效抑制Cr(Ⅵ)-赤铁矿胶体聚集,使Cr(Ⅵ)-赤铁矿胶体在石英砂柱中的穿透量增加,增强了Cr(Ⅵ)-赤铁矿胶体悬浮液的稳定性,提高了赤铁矿胶体携带Cr(Ⅵ)的运移能力. 基于DLVO理论,综合柱流出物的zeta电位和颗粒尺寸的演变规律,揭示了Cr(Ⅵ)、赤铁矿胶体和腐殖酸在二元和三元体系中协同运移的作用机理. 研究结果将为评估制革污泥中的赤铁矿胶体在实际环境中携带Cr(Ⅵ)运移的风险提供理论支持.Abstract: Long-term landfill storage of chrome-containing sludge may cause pollution risks to the surrounding environment. Tanning sludge contains abundant colloidal substances and humic acid. Studies have shown that humic acid can affect the co-transport of colloid and Cr(Ⅵ) in porous media through adsorption and electrostatic interaction, causing Cr(Ⅵ) transport to deep underground environment. However, the effect of coexisting substances such as hematite (Hem) colloids in tannery sludge on the transport of Cr(Ⅵ) remains unclear. In this study, the characteristic components (Hem colloids and humic acid (HA)) in tannery sludge were selected to simulate the effects of HA and Cr(Ⅵ) concentration on the stability and transport behavior of Hem colloids under acidic conditions through adsorption and column transport experiments, exploring the environmental risk of Cr(Ⅵ)-Hem colloids co-transporting. The results showed that the maximum adsorption of Cr(Ⅵ) by Hem colloids was 2.72 mg·g−1; the higher the concentration of Cr(Ⅵ), the more obvious the aggregation of Hem colloids. However, HA effectively inhibited the aggregation of Cr(Ⅵ)-Hem colloid, therefore increased their penetration in quartz sand columns and enhanced the transport capacity of Hem colloids carrying Cr(Ⅵ). The co-transport mechanisms of Cr(Ⅵ), Hem colloids and HA in binary and ternary systems were comprehensively revealed by evaluating the evolution of zeta potential and particle size of the column effluent as well as DLVO theoretical calculations. The results will provide theoretical support to evaluate the risk of Cr(Ⅵ) transport being carried by Hem colloids in tannery sludge under the real-life situation.
-
Key words:
- Hem colloids /
- Cr(Ⅵ) /
- pH /
- saturated porous media /
- transport
-
表 1 柱迁移实验条件设置
Table 1. Column experiment conditions
HA浓度/ (mg·L−1)
HA concentrationHem浓度/ (mg·L−1)
Hem concentrationCr(Ⅵ)浓度/ (mg·L−1)
Cr(Ⅵ) concentrationpH NaCl浓度/ (mmol·L−1)
NaCl concentration孔隙度
Porosity— 20 0 5 1 0.47 — 20 0.25 5 1 0.47 — 20 5 5 1 0.49 — 20 10 5 1 0.47 0.25 20 0.25 5 1 0.46 0.25 20 5 5 1 0.47 0.25 20 10 5 1 0.48 表 2 不同浓度Cr(Ⅵ)溶液中Hem胶体与石英砂之间的DLVO势能计算及运移实验中Hem胶体的回收率(pH=5)
Table 2. DLVO interaction energy between Hem colloid and quartz sand at different concentrations of Cr(Ⅵ) and recovery rates of hematite colloid in column experiments
HA/
(mg·L−1)Cr(Ⅵ)/
(mg·L−1)D/nm ζ/mV ζs/mV Ф/kT M/% Фmax Фmin2 Meff Mret Mtot 0 0 199 ± 10 25.3 ± 0.8 −33.2 ± 0.9 — — 1.5 87.4 88.8 0 0.25 213 ± 17 23.6 ± 0.8 −33.2 ± 0.9 — — 1.7 86.0 87.7 0 5 207 ± 20 15.3 ± 0.4 −33.2 ± 0.9 — — 1.3 82.9 84.2 0 10 202 ± 27 14.5 ± 0.5 −33.2 ± 0.9 — — 1.4 85.2 86.6 0.25 0 203 ± 10 −25.3 ± 0.4 −33.2 ± 0.9 109.0 −0.08 56.4 33.2 89.7 0.25 0.25 196 ± 22 −22.4 ± 0.5 −33.2 ± 0.9 98.3 −0.08 53.1 29.7 82.9 0.25 5 188 ± 9 −26.1 ± 0.7 −33.2 ± 0.9 118.5 −0.08 59.3 26.7 86.0 0.25 10 207 ± 31 −27.4 ± 0.6 −33.2 ± 0.9 125.8 −0.08 61.7 23.0 84.7 D为Hem胶体的水合粒径;ζ为Hem胶体的zeta电势;ζs为石英砂的zeta电势;Ф为Hem胶体与石英砂之间的总相互作用势能,其中Фmax为最大排斥势垒,Фmin2为次级势阱;M为Hem胶体的质量回收率,其中Meff为出流液中胶体的回收率,Mret为砂柱中胶体的回收率,Mtot为总回收率.
D is the hydrated particle size of Hem colloid. ζ is the zeta potential of the Hem colloid. ζs is the zeta potential of quartz sand. Ф is the total interaction potential energy between Hem colloid and quartz sand, of which Фmax is the maximum repulsive barrier, Фmin2 is the secondary potential well; M is the mass recovery rate of Hem colloid, where Meff is the recovery rate of colloid in the outflow liquid, Mret is the recovery rate of colloid in the sand column, and Mtot is the total recovery rate. -
[1] 杨本晓, 梁思哲, 张建华. 制革企业节能诊断实例研究[J]. 皮革科学与工程, 2023, 33(3): 94-98. YANG B X, LIANG S Z, ZHANG J H. Case study of energy-saving diagnosis in leather enterprise[J]. Leather Science and Engineering, 2023, 33(3): 94-98 (in Chinese).
[2] 杨朝, 崔俊云. 制革污水智能处理方法及清洁化生产技术研究[J]. 中国皮革, 2023, 52(4): 124-128,132. YANG Z, CUI J Y. Treatment method and clean production of tannery wastewater[J]. China Leather, 2023, 52(4): 124-128,132 (in Chinese).
[3] 黑静. 制革工业重金属污染治理技术概述[J]. 西部皮革, 2022, 44(21): 18-20. HEI J. Overview of heavy metal pollution control technology in leather industry[J]. West Leather, 2022, 44(21): 18-20 (in Chinese).
[4] 姚庆达, 黄鑫婷, 周华龙, 等. 制革含铬污泥处置及资源化技术进展[J]. 中国皮革, 2023, 52(5): 7-14. YAO Q D, HUANG X T, ZHOU H L, et al. Disposal and recycling technology of chromium-containing sludge from tannery: A review[J]. China Leather, 2023, 52(5): 7-14 (in Chinese).
[5] ZHANG F Z, PENG Y Z, WANG Z, et al. An innovative process for mature landfill leachate and waste activated sludge simultaneous treatment based on partial nitrification, in situ fermentation, and anammox (PNFA)[J]. Environmental Science & Technology, 2022, 56(2): 1310-1320. [6] GUO S S, TIAN Y Q, WU H, et al. Spatial distribution and morphological transformation of chromium with coexisting substances in tannery landfill[J]. Chemosphere, 2021, 285: 131503. doi: 10.1016/j.chemosphere.2021.131503 [7] 王兴润, 李磊, 颜湘华, 等. 铬污染场地修复技术进展[J]. 环境工程, 2020, 38(6): 1-8,23. WANG X R, LI L, YAN X H, et al. Progress in remediation of chromium-contaminated sites[J]. Environmental Engineering, 2020, 38(6): 1-8,23 (in Chinese).
[8] GUO S S, XU Y H, YANG J Y. Simulating the migration and species distribution of Cr and inorganic ions from tanneries in the vadose zone[J]. Journal of Environmental Management, 2021, 288: 112441. doi: 10.1016/j.jenvman.2021.112441 [9] YE T T, LI H B, WANG Z X, et al. Transport and fate of hexavalent chromium in slag-soil system[J]. Environmental Earth Sciences, 2019, 78(7): 239. doi: 10.1007/s12665-019-8245-9 [10] 潘俊, 张玉祥, 王昭怡. 滞洪型平原水库底泥中铬的迁移转化[J]. 环境科学与技术, 2019, 42(增刊2): 93-97. PAN J, ZHANG Y X, WANG Z Y. Migration and transformation of chromium in sediments of flood detention plain reservoirs[J]. Environmental Science & Technology, 2019, 42(Sup 2): 93-97 (in Chinese).
[11] 徐铁兵, 师碧玲, 吕媛, 等. 制革污泥堆场中含Cr污泥胶体在不同pH和离子强度条件下稳定性及迁移行为研究[J]. 环境科学学报, 2023, 43(3): 244-254. XU T B, SHI B L, LÜ Y, et al. Stability and migration behavior of Cr-containing sludge colloids in tannery sludge landfill under different pH and ionic strength conditions[J]. Acta Scientiae Circumstantiae, 2023, 43(3): 244-254 (in Chinese).
[12] 夏平平. δ-MnO2对Cr(Ⅲ)氧化动力学的研究[D]. 武汉: 华中农业大学, 2012. XIA P P. Kinetics study of Cr(Ⅲ) oxidation by δ-MnO2[D]. Wuhan: Huazhong Agricultural University, 2012 (in Chinese).
[13] YANG F, GUO J, DAI R N, et al. Oxidation of Cr(III)-citrate/tartrate complexes by δ-MnO2: Production of Cr(Ⅵ) and its impact factors[J]. Geoderma, 2014, 213: 10-14. doi: 10.1016/j.geoderma.2013.07.022 [14] SHI M Q, MIN X B, KE Y, et al. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides[J]. Science of the Total Environment, 2021, 752: 141930. doi: 10.1016/j.scitotenv.2020.141930 [15] 孔祥科. 制革污泥中Cr(Ⅲ)和氨氮在包气带的迁移转化及微生物响应机制[D]. 北京: 中国地质科学院, 2019. KONG X K. Migration and transformation of Cr(Ⅲ) and ammonia-nitrogen from tannery sludge and the corresponding microbial response mechanisms in the vadose zone[D]. Beijing: Chinese Academy of Geological Sciences, 2019 (in Chinese).
[16] ZHOU Y C, CHEN Z Z, GONG H J, et al. Chromium speciation in tannery sludge residues after different thermal decomposition processes[J]. Journal of Cleaner Production, 2021, 314: 128071. doi: 10.1016/j.jclepro.2021.128071 [17] 朱龙辉, 李航, 田锐, 等. 正电荷胶体(赤铁矿)凝聚动力学机制的激光散射研究[J]. 西南大学学报(自然科学版), 2016, 38(7): 70-75. ZHU L H, LI H, TIAN R, et al. Kinetics mechanism of aggregation of the positively charged colloid(hematite)by laser scattering technology[J]. Journal of Southwest University (Natural Science Edition), 2016, 38(7): 70-75 (in Chinese).
[18] AGUELMOUS A, LAHSAINI S, FELS L, et al. Biodegradation assessment of biological oil sludge from a petroleum refinery[J]. Journal of Materials and Environmental Science, 2016, 7(9): 3421-3430. [19] ZOU D A, CHI Y, DONG J, et al. Supercritical water oxidation of tannery sludge: Stabilization of chromium and destruction of organics[J]. Chemosphere, 2013, 93(7): 1413-1418. doi: 10.1016/j.chemosphere.2013.07.009 [20] YANG Y, SAIERS J E, BARNETT M O. Impact of interactions between natural organic matter and metal oxides on the desorption kinetics of uranium from heterogeneous colloidal suspensions[J]. Environmental Science & Technology, 2013, 47(6): 2661-2669. [21] LIAO P, PAN C, DING W Y, et al. Formation and transport of Cr(Ⅲ)-NOM-Fe colloids upon reaction of Cr(Ⅵ) with NOM-Fe(II) colloids at anoxic-oxic interfaces[J]. Environmental Science & Technology, 2020, 54(7): 4256-4266. [22] GUO S S, YU C Y, ZHAO X Y, et al. The chromium migration risk from tannery sludge into shallow soil and groundwater: Influence factors, modeling, and microbial response[J]. Journal of Cleaner Production, 2022, 374: 133776. doi: 10.1016/j.jclepro.2022.133776 [23] CORNELL R M, SCHWERTMANN U. The iron oxides: structure, properties, reactions, occurrences, and uses[M]. 2nd, completely rev. and extended ed. Weinheim: Wiley-VCH, 2003. [24] ADAMCZYK Z, WEROŃSKI P. Application of the DLVO theory for particle deposition problems[J]. Advances in Colloid and Interface Science, 1999, 83(1/2/3): 137-226. [25] FRITZ G, SCHÄDLER V, WILLENBACHER N, et al. Electrosteric stabilization of colloidal dispersions[J]. Langmuir, 2002, 18(16): 6381-6390. doi: 10.1021/la015734j [26] FRENCH R A, JACOBSON A R, KIM B, et al. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles[J]. Environmental Science & Technology, 2009, 43(5): 1354-1359. [27] SHAHID M, SHAMSHAD S, RAFIQ M, et al. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review[J]. Chemosphere, 2017, 178: 513-533. doi: 10.1016/j.chemosphere.2017.03.074 [28] AQUINO C L E, BONGAR M J C, SILVESTRE A B, et al. Synthesis of hematite (α-Fe2O3) nanostructures by thermal oxidation of iron sheet for Cr (VI) adsorption[J]. Key Engineering Materials, 2018, 775: 395-401. doi: 10.4028/www.scientific.net/KEM.775.395 [29] 谢青青, 马晓燕, 艾迪娅·阿不来提, 等. 腐殖酸对二甲基胂酸在磁铁矿上吸附过程的影响[J]. 环境化学, 2023, 42(2): 658-670. doi: 10.7524/j.issn.0254-6108.2022072201 XIE Q Q, MA X Y, HADIYA A, et al. Effect of humic acid on the adsorption of dimethylarsinic acid by magnetite[J]. Environmental Chemistry, 2023, 42(2): 658-670 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022072201
[30] LI Y, YUE Q Y, GAO B Y, et al. Adsorption thermodynamic and kinetic studies of dissolved chromium onto humic acids[J]. Colloids and Surfaces B:Biointerfaces, 2008, 65(1): 25-29. doi: 10.1016/j.colsurfb.2008.02.014 [31] SALMAN M, EL-ESWED B, KHALILI F. Adsorption of humic acid on bentonite[J]. Applied Clay Science, 2007, 38(1/2): 51-56. [32] KANTAR C, BULBUL M S, KESKIN S. Role of humic substances on Cr(Ⅵ) removal from groundwater with pyrite[J]. Water, Air, & Soil Pollution, 2017, 228(1): 48. [33] WANG X R, LI L, YAN X H, et al. Processes of chromium (Ⅵ) migration and transformation in chromate production site: A case study from the middle of China[J]. Chemosphere, 2020, 257: 127282. doi: 10.1016/j.chemosphere.2020.127282 [34] LI X Y, ZHOU T, LI Z, et al. Legacy of contamination with metal(loid)s and their potential mobilization in soils at a carbonate-hosted lead-zinc mine area[J]. Chemosphere, 2022, 308(Pt 3): 136589. [35] 崔申申, 杜晓丽, 刘殿威, 等. 降雨入渗对下渗设施土壤胶体-重金属共释放迁移的影响[J]. 环境化学, 2022, 41(9): 2842-2849. doi: 10.7524/j.issn.0254-6108.2021100806 CUI S S, DU X L, LIU D W, et al. Influence of rainfall infiltration on soil colloids-heavy metals co-release and co-migration in infiltration column[J]. Environmental Chemistry, 2022, 41(9): 2842-2849 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021100806
[36] YANG J W, ZHANG Z, CHEN Z Y, et al. Co-transport of U(Ⅵ) and gibbsite colloid in saturated granite particle column: Role of pH, U(Ⅵ) concentration and humic acid[J]. Science of the Total Environment, 2019, 688: 450-461. doi: 10.1016/j.scitotenv.2019.05.395 [37] CHEN C, ZHAO K, SHANG J Y, et al. Uranium (Ⅵ) transport in saturated heterogeneous media: Influence of kaolinite and humic acid[J]. Environmental Pollution, 2018, 240: 219-226. doi: 10.1016/j.envpol.2018.04.095