-
水体氟污染被公认为是世界范围内严重的环境问题之一[1]. 目前,全球约三分之一的地区、超过35个国家存在氟污染,尤其是发展中国家的农村地区氟中毒情况较严重[2]. 在多数情况下,碱性水体、矿物含氟多、地下水闭流的地区氟污染比较严重. 工业“三废”大量排放也是造成很多地区氟污染的重要原因[3]. 水体中除少量镁-氟化物复合物(MgF+)以外,超过95%以上以F−形态存在[4]. 而氟是人体和生态必需的元素之一,少量氟化物有利于骨骼生长发育和预防蛀牙,但摄取过多轻者出现氟斑牙、氟骨病等疾病,重者则会产生骨骼变脆、骨质疏松、神经损伤等病变[5]. 因此,保障氟污染水体的高效处理具有重要现实意义. 目前常用的除氟方法有膜分离法、离子交换法、沉淀法、电凝聚法、吸附法等[6 − 15],其中吸附法由于其吸附效率高、成本低、操作便捷的优点而得到广泛应用.
近期研究表明,稀土元素具有较低的离子电位和较高的碱度,如氧化镧、氧化铈等,它们具有很强的将表面羟基(−OH)解离为氢氧根离子(OH−)的能力[16],对水中F−具有极佳的吸附性能[17-18]. 常用的商用除氟剂如活性氧化铝(AA)和氧化铁,使用时受溶液酸碱性影响较大,金属离子容易溶出[19]. 相比之下,水合氧化铈(HCO)稳定性良好,具备优良的抗酸碱溶出性能,比表面积大,且除氟活性高[20]. 此外,铈氧化物对氟具有高选择性,在各种阴离子共存时,HCO的选择性顺序为:F−>HPO42−>SO42−≥Br−[21]. 因此,HCO在水体除氟领域具备良好的应用前景.
然而,HCO的小尺寸特性使其在实际应用中分离困难、颗粒易流失及难回收利用[22-23],若将其负载于活性炭、介孔硅、生物质或离子交换树脂等大尺寸多孔载体内部则能有效地解决以上问题[24 − 27]. 其中,离子交换树脂D201为均匀的大颗粒球体结构,尺寸介于0.5—0.7 mm之间,具有良好的机械强度和水力学特性;且耐酸碱性能好,易于表面改性;其应用于固定床操作系统中,过水流量均匀,压头损失小,且操作简便,易脱附再生. 因此,D201可作为一种优良的载体材料,近期受到越来越多的关注[28]. 此外,D201表面修饰的季铵基团携带大量强正电荷,可与F−产生静电吸附作用,能够显著提高材料的除氟能力[29].
本研究中以D201为载体,将高活性HCO纳米颗粒嵌入其内,制备得到高性能铈基复合纳米材料HCO@D201. 考察溶液pH、反应温度、反应时间、竞争离子等因素对其除氟性能的影响规律,探究复合材料深度除氟的基本性能与作用机制,评价复合材料循环吸附再生性能,为复合纳米材料在水体高效除氟中的实际应用提供理论依据.
铈基复合纳米材料的研制及其除氟特性
Preparation of cerium-based composite nanomaterials using for defluorination from water
-
摘要: 通过“前驱体导入-原位沉淀”法将纳米水合氧化铈(HCO)固载到大孔阴离子交换树脂载体D201内部. 通过改变铈盐的用量,制备出3种不同HCO负载量(3.1%、8.3%、11.7%)的铈基复合纳米材料,系统探究其对水中F−的吸附行为及机制. XRD、TEM及BET分析表明,HCO纳米颗粒已成功固载在D201基体内部,且复合材料具有良好的晶型结构和较大的比表面积. 静态吸附实验显示,HCO负载量增加有利于提高除氟性能. 综合考虑成本与性能,选择HCO固载量8.3%为最佳复合材料,吸附量可达84.2 mg·g–1,符合Langmuir吸附等温模型;最佳吸附pH区间为2.0—6.0,且在120 min内能够达到吸附平衡;竞争离子/F−比值高达60时吸附容量仍保持在原吸附量50%以上,吸附选择性明显优于商用D201;经5次吸附-再生除氟性能仍高于原吸附量60%,表现出良好的再生能力. XPS分析结果显示,复合材料表面羟基与F−之间的配体交换作用是特异性除氟的主要原因.Abstract: Nano-sized hydrated cerium oxide (HCO) was immobilized within a commercial porous polystyrene anion exchanger D201 though “precursor leading/ in-situ precipitation”. Three kinds of Ce-based nanocomposites with different HCO loading (3.1%, 8.3%, 11.7%) were prepared by changing the concentration of cerium salt, and the adsorption behavior and mechanism on defluorination from water were systematically investigated. Analysis of XRD, TEM and BET indicated that HCO nanoparticles have been successfully supported in D201 matrix, and the nanocomposites have good crystalline structure and large specific surface area. Batch experiments showed that the increase of HCO loading was favorable to the improvement of defluorination performance. Upon evaluating the balance between cost and performance, the nanocomposite with 8.3% HCO loading was selected as the best adsorbent, and the maximum adsorption capacity can reach 84.2 mg·g–1, which is in line with the Langmuir adsorption isothermal model. The optimal adsorption pH range is 2.0—6.0, and the adsorption equilibrium can be reached within 120 min. When the competitive ion /F− ratio is as high as 60, the adsorption capacity is still more than 50% of the original adsorption capacity, and the adsorption selectivity is obviously better than commercial D201. After 5 times of adsorption and regeneration, the defluorination performance is still 60% higher than the original adsorption capacity, showing a good regeneration ability. The results of XPS analysis showed that the ligand exchange between F− and the hydroxyl groups on the surface of nanocomposite was the main reason for specific defluorination.
-
Key words:
- hydrated cerium oxide /
- nanocomposite /
- fluorine /
- adsorption.
-
表 1 HCO@D201吸附氟的等温拟合参数
Table 1. Adsorption isotherm fitting parameters of HCO@D201
材料
MaterialsLangmuir Freundlich Qe/(mg·g–1) KL/(L·g–1) R2 1/n KF/
(mg∙g–1)·(L·mg–1)1/nR2 D201 16.3 0.0186 0.9666 0.782 0.54 0.9731 HCO@D201-3.1 70.9 0.0328 0.9780 0.359 5.75 0.9669 HCO@D201-8.3 84.2 0.0158 0.9379 0.553 3.55 0.9808 HCO@D201-11.7 85.1 0.0121 0.9337 0.650 2.39 0.9659 表 2 材料对氟的吸附动力学拟合参数
Table 2. Adsorption kinetics fitting parameters of HCO@D201-8.3 and D201
材料
Materials伪一级动力学
Pseudo first order kinetics伪二级动力学
Pseudo second order kineticsQe /(mg·g–1) R2 k1 /(min–1) Qe / (mg·g–1) R2 k2/
(g ·mg–1·min–1)D201 10.2 0.9460 0.1235 10.6 0.9708 0.0189 HCO@D201-8.3 32.5 0.9142 0.1611 34.1 0.9728 0.0067 表 3 材料除氟性能对比
Table 3. Comparison of Different Materials
吸附材料
The adsorption materialpH T /K 吸附量/(mg·g−1)
The adsorption quantity参考文献
ReferenceFe2 (SO4)3-MGAA 5.0 298 16.8 [33] 纳米氧化铝 6.2 298 14.0 [34] [Eu3(L2)2(OH)(DMF)0.22(H2O)5.78] 7.1 298 57.0 [35] 改性纳米氧化铝 6.2 2.98 5.7 [36] 聚吡咯/四氧化三铁 6.5 298 17.6 [37] HZO-201 6.8 298 24.2 [38] MIL-53 (Fe) 6.8 298 17.0 [39] HAP@D201 7.0 298 21.4 [40] LIBONs 3—10 298 14.5 [41] 氧化铝负载镧170℃烘焙产物 3—8 308 44.9 [42] SAE 7.0 298 21.7 [43] 氧化钙改性氧化铝 5.5 298 96.3 [44] D201 4.0 298 16.3 本研究 HCO@D201-3.1 4.0 298 70.9 本研究 HCO@D201-8.3 4.0 298 84.2 本研究 HCO@D201-11.7 4.0 298 85.1 本研究 -
[1] AMINI M, ABBASPOUR K C, BERG M, et al. Statistical modeling of global geogenic arsenic contamination in groundwater[J]. Environmental Science & Technology, 2008, 42(10): 3669-3675. [2] 周振, 马文, 方小军, 等. 砷、氟污染地下水净化技术进展[J]. 净水技术, 2021, 40(10): 7-19. ZHOU Z, MA W, FANG X J, et al. Advances in purification technology for groundwater polluted by arsenic and fluorine[J]. Water Purification Technology, 2021, 40(10): 7-19 (in Chinese).
[3] 张晓丽. 聚硅酸金属盐类絮凝剂的制备及除氟性能研究[D]. 济南: 山东建筑大学, 2022. ZHANG X L. Study on preparation and fluoride removal performance of polysilicate metal salt flocculant[D]. Jinan: Shandong Jianzhu University, 2022 (in Chinese).
[4] 李凤嫣, 蒋天宇, 余涛, 等. 环境中氟的来源及健康风险评估研究进展[J]. 岩矿测试, 2021, 40(6): 793-807. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106001 LI F Y, JIANG T Y, YU T, et al. Review on sources of fluorine in the environment and health risk assessment[J]. Rock and Mineral Analysis, 2021, 40(6): 793-807 (in Chinese). doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106001
[5] 鲁涵, 曾妍妍, 周金龙, 等. 巴楚县浅层地下水中氟的分布特征及影响因素分析[J]. 环境化学, 2021, 40(11): 3455-3463. doi: 10.7524/j.issn.0254-6108.2020071602 LU H, ZENG Y Y, ZHOU J L, et al. Distribution characteristics and influencing factors of fluorine in shallow groundwater of Bachu County[J]. Environmental Chemistry, 2021, 40(11): 3455-3463 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020071602
[6] KAGNE S, JAGTAP S, THAKARE D, et al. Bleaching powder: A versatile adsorbent for the removal of fluoride from aqueous solution[J]. Desalination, 2009, 243(1/2/3): 22-31. [7] 张强英, 陶金帅, 李伟, 等. 废弃茶叶吸附剂去除水中的氟离子[J]. 环境化学, 2022, 41(4): 1303-1311. doi: 10.7524/j.issn.0254-6108.2020122002 ZHANG Q Y, TAO J S, LI W, et al. Waste tea-leaves as adsorbent for the removal of fluoride from water solution[J]. Environmental Chemistry, 2022, 41(4): 1303-1311 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020122002
[8] HE J S, SIAH T S, CHEN J P. Performance of an optimized Zr-based nanoparticle-embedded PSF blend hollow fiber membrane in treatment of fluoride contaminated water[J]. Water Research, 2014, 56: 88-97. doi: 10.1016/j.watres.2014.02.030 [9] TANG W W, HE D, ZHANG C Y, et al. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes[J]. Water Research, 2017, 120: 229-237. doi: 10.1016/j.watres.2017.05.009 [10] 郑国河, 李剑超, 卢堂俊, 等. 镧掺杂纳米材料合成及其高氟选择性吸附特性[J]. 环境化学, 2009, 28(6): 823-828. ZHENG G H, LI J C, LU T J, et al. Synthesis of la doped nano materials used in high-selective defluorination[J]. Environmental Chemistry, 2009, 28(6): 823-828 (in Chinese).
[11] SHEN J J, SCHÄFER A. Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review[J]. Chemosphere, 2014, 117: 679-691. doi: 10.1016/j.chemosphere.2014.09.090 [12] DAMTIE M M, WOO Y C, KIM B, et al. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review[J]. Journal of Environmental Management, 2019, 251: 109524. doi: 10.1016/j.jenvman.2019.109524 [13] LÓPEZ-GUZMÁN M, ALARCÓN-HERRERA M T, IRIGOYEN-CAMPUZANO J R, et al. Simultaneous removal of fluoride and arsenic from well water by electrocoagulation[J]. The Science of the Total Environment, 2019, 678: 181-187. doi: 10.1016/j.scitotenv.2019.04.400 [14] YADAV K K, KUMAR S, PHAM Q B, et al. Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109362. doi: 10.1016/j.ecoenv.2019.06.045 [15] ZHANG Y Y, QIAN Y, LI W, et al. Fluoride uptake by three lanthanum based nanomaterials: Behavior and mechanism dependent upon lanthanum species[J]. The Science of the Total Environment, 2019, 683: 609-616. doi: 10.1016/j.scitotenv.2019.05.185 [16] ZHANG Y, YANG M, DOU X M, et al. Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: Role of surface properties[J]. Environmental Science & Technology, 2005, 39(18): 7246-7253. [17] 纪现凯. 纳米磷酸钛及树脂负载磷酸钛复合材料高效净化水中氟离子的性能研究[D]. 秦皇岛: 燕山大学, 2015: 5-7. JI X K. Titanium phosphate and resin encapsulated titanium phosphate for the efficient removal of fluoride ions from water[D]. Qinhuangdao: Yanshan University, 2015: 5-7 (in Chinese).
[18] DOU X M, MOHAN D, PITTMAN C U, et al. Remediating fluoride from water using hydrous zirconium oxide[J]. Chemical Engineering Journal, 2012, 198/199: 236-245. doi: 10.1016/j.cej.2012.05.084 [19] YADAV K K, GUPTA N, KUMAR V, et al. A review of emerging adsorbents and current demand for defluoridation of water: Bright future in water sustainability[J]. Environment International, 2018, 111: 80-108. doi: 10.1016/j.envint.2017.11.014 [20] 杨鑫波. 石灰石/READ-F反应器处理含氟废水的研究[D]. 重庆: 重庆大学, 2008: 29-30. YANG X B. Study on removal of fluoride from wastewater by limestone/READ-F reactor[D]. Chongqing: Chongqing University, 2008: 29-30 (in Chinese).
[21] 李晓云, 宋宽秀, 颜秀茹, 等. 稀土化合物在水体除氟技术中应用研究的进展[J]. 化学工业与工程, 1999, 16(5): 286-291. LI X Y, SONG K X, YAN X R, et al. Development of deflourination from water by rare earth compound[J]. Chemical Industry and Engineering, 1999, 16(5): 286-291 (in Chinese).
[22] 王帆. 合成多孔硅基氧化铈微球及除氟性能的研究[D]. 南宁: 广西大学, 2018: 9-10. WANG F. The synthetic of porous silicon base cerium oxide microspheres and its application in removal of fluoride[D]. Nanning: Guangxi University, 2018: 9-10 (in Chinese).
[23] 丁鸿. 氧化铈及其磁性纳米复合材料对水中磷酸盐吸附性能的研究[D]. 太原: 太原理工大学, 2017: 12-13. DING H. Study on adsorption performance for phosphate in aqueous solution by cerium oxide and its magnetic nanocomposites[D]. Taiyuan: Taiyuan University of Technology, 2017: 12-13 (in Chinese).
[24] TENG J E, ZHANG Q R, YANG Q G, et al. New route to the charged functional assisted nano-lanthanum hydroxide composite with superior lead sorption capacities[J]. Science of Advanced Materials, 2015, 7(9): 1722-1729. doi: 10.1166/sam.2015.2393 [25] LAI L, XIE Q, CHI L N, et al. Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide[J]. Journal of Colloid and Interface Science, 2016, 465: 76-82. doi: 10.1016/j.jcis.2015.11.043 [26] ZHOU Y M, YU C X, SHAN Y. Adsorption of fluoride from aqueous solution on La3+-impregnated cross-linked gelatin[J]. Separation and Purification Technology, 2004, 36(2): 89-94. doi: 10.1016/S1383-5866(03)00167-9 [27] KAMBLE S P, JAGTAP S, LABHSETWAR N K, et al. Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan[J]. Chemical Engineering Journal, 2007, 129(1/2/3): 173-180. [28] 黄蓉. 废PET乙二醇醇解单体BHET的离子交换树脂脱色研究[D]. 北京: 中国科学院大学, 2021. HUANG R. Decolorization of waste PET glycol alcoholysis monomer BHET by ion exchange resin[D]. Beijing: University of Chinese Academy of Sciences, 2021 (in Chinese).
[29] CHEN L, ZHAO X, PAN B C, et al. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability[J]. Journal of Hazardous Materials, 2015, 284: 35-42. doi: 10.1016/j.jhazmat.2014.10.048 [30] GB 7484-87, 水质氟化物的测定离子选择电极法[S]. 北京: 中国标准出版社, 1987. GB 7484-87, Water quality-determination of fluoride-ion selective electrode method[S]. Beijing: Standards Press of China, 1987 (in Chinese).
[31] CHU S L, LI X, ROBERTSON A W, et al. Electrocatalytic CO2 reduction to ethylene over CeO2-supported Cu nanoparticles: Effect of exposed facets of CeO2[J]. Acta Physico Chimica Sinica, 2020: 2009023. [32] CHEN L, ZHANG K S, HE J Y, et al. Performance and mechanism of hierarchically porous Ce-Zr oxide nanospheres encapsulated calcium alginate beads for fluoride removal from water[J]. RSC Advances, 2016, 66(43): 36296-36306. [33] 徐雷, 马培根, 丁文明. 硫酸铁改性活性氧化铝除氟性能及机理探究[J]. 北京化工大学学报(自然科学版), 2017, 44(6): 18-24. XU L, MA P G, DING W M. Defluorination performance of activated alumina modified by ferric sulfate[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2017, 44(6): 18-24 (in Chinese).
[34] MA A Q, KE F, JIANG J, et al. Two lanthanide-based metal-organic frameworks for highly efficient adsorption and removal of fluoride ions from water[J]. CrystEngComm, 2017, 19(16): 2172-2177. doi: 10.1039/C7CE00291B [35] SHIVAPRASAD P, SINGH P K, SAHARAN V K, et al. Synthesis of nano alumina for defluoridation of drinking water[J]. Nano-Structures & Nano-Objects, 2018, 13: 109-120. [36] KUMAR E, BHATNAGAR A, KUMAR U, et al. Defluoridation from aqueous solutions by nano-alumina: Characterization and sorption studies[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1042-1049. [37] BHAUMIK M, LESWIFI T Y, MAITY A, et al. Removal of fluoride from aqueous solution by polypyrrole/Fe3O4 magnetic nanocomposite[J]. Journal of Hazardous Materials, 2011, 186(1): 150-159. doi: 10.1016/j.jhazmat.2010.10.098 [38] PAN B C, XU J S, WU B, et al. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles[J]. Environmental Science & Technology, 2013, 47(16): 9347-9354. [39] ZHAO X D, LIU D H, HUANG H L, et al. The stability and defluoridation performance of MOFs in fluoride solutions[J]. Microporous and Mesoporous Materials, 2014, 185: 72-78. doi: 10.1016/j.micromeso.2013.11.002 [40] QIU H, YE M C, ZHANG M D, et al. Nano-hydroxyapatite encapsulated inside an anion exchanger for efficient defluoridation of neutral and weakly alkaline water[J]. ACS ES& T Engineering, 2021, 1(1): 46-54. [41] 张钰卿, 刘佳, 许兵, 等. 含氟废水处理中的除氟吸附技术研究进展[J]. 净水技术, 2022, 41(5): 23-29,61. ZHANG Y Q, LIU J, XU B, et al. Research progress of adsorption technology for defluorination in fluoride-containing wastewater treatment[J]. Water Purification Technology, 2022, 41(5): 23-29,61 (in Chinese).
[42] 顾浩, 许昭怡, 李丽媛, 等. 氧化铝负载镧去除水中F–的研究[J]. 环境科学学报, 2009, 29(3): 589-593. GU H, XU Z Y, LI L Y, et al. Removal of fluoride from water using lanthanum oxide-coated alumina[J]. Acta Scientiae Circumstantiae, 2009, 29(3): 589-593 (in Chinese).
[43] 宋明珊, 李舒舒, 叶长青. 有氧热解改性木屑及其对氟离子的吸附研究[J]. 广州化学, 2023, 48(2): 36-45. SONG M S, LI S S, YE C Q. Study on modification of sawdust by aerobic pyrolysis and its adsorption of fluoride ions[J]. Guangzhou Chemistry, 2023, 48(2): 36-45 (in Chinese).
[44] CAMACHO L M, TORRES A, SAHA D, et al. Adsorption equilibrium and kinetics of fluoride on sol-gel-derived activated alumina adsorbents[J]. Journal of Colloid and Interface Science, 2010, 349(1): 307-313. doi: 10.1016/j.jcis.2010.05.066