-
抗生素是由微生物或高等动植物在生活过程中所产生的能杀灭其他微生物或具有抗病原体的代谢次级产物,主要的作用是抑菌或杀菌[1]. 常见的四环素类抗生素(tetracycline antibiotics, TCs),包括四环素(tetracycline, TC)、土霉素(oxytetracycline, OTC)、金霉素(chlortetracycline, CTC)、强力霉素(doxycycline, DC)等,是由放线菌产生的可抑制细菌蛋白合成的一类抗生素、具有广谱性,其名称源于它们内部结构均含并四苯骨架,对非典型生物如革兰氏阳性和革兰氏阴性细菌、衣原体以及支原体发挥治疗作用[2]. 然而TCs具有较长的半衰期、在生态环境中长期累积、威胁环境安全,即使低浓度也可能通过食物链进入人体体内,引发肝脏损伤,增大人群患病风险[3 − 4]. 因此,去除环境中的TCs意义深远.
目前已有几种较为成熟的方法去除TCs,如吸附法、离子交换法、光降解法、高级氧化降解法、生物降解法等. 与其他方法相比,吸附法因成本低、操作简便和效率高被广泛用于TCs的去除[5];而光降解和氧化降解因能降解持久性的污染物,在抗生素的去除研究中也引起了学术界广泛关注,尤其是高级氧化法中的类Fenton催化氧化法和硫酸根基氧化法,是近年来降解抗生素的研究热点[6].
传统的吸附材料如活性炭、氧化石墨烯、沸石复合材料等存在吸附能力低、再生性和稳定性不理想的缺点,另外,类Fenton法和过硫酸盐法中的催化剂在降解过程中易呈现粉末状而导致回收困难且成本昂贵等劣势,催促了磁性碳基纳米材料(magnetic carbon-based composite nanomaterials, MCCN)的产生并得到广泛应用[7]. MCCN实质上是对碳基纳米材料的磁性改性. 碳基纳米材料如生物多孔炭、金属有机骨架化合物(metal organic frameworks, MOFs)衍生生物炭以及石墨烯氮化碳g-C3N4等,源于其丰富的孔容和高比表面积,在吸附工艺中对抗生素表现出较好的吸附性能,在高级氧化降解过程中可运载催化剂,并激活H2O2或过硫酸盐产生活性物种,实现降解抗生素. 对新型碳基纳米材料进行磁性改性后,利于碳基纳米材料的磁性分离和回收利用. MCCN通过吸附和降解两种方法去除TCs见图1.
磁性碳基复合纳米材料对四环素类抗生素的吸附和降解研究进展
Research progress on adsorption and degradation of tetracycline antibiotics by magnetic carbon-based composite nanomaterials
-
摘要: 近年来,磁性碳基复合纳米材料(magnetic carbon-based composite nanomaterials,MCCN)因其具有比表面积大,方便磁分离及回收循环利用等优点而引起众多科研工作者关注. 鉴于四环素类抗生素(tetracycline antibiotics,TCs)在环境中耐性强、不易分解,长期累积对人体健康造成潜在的威胁. 由此,本文综述了近3年来发展的各类新型MCCN作为优良吸附剂和催化剂应用于TCs的去除,并在吸附和降解两方面对去除TCs的机理和影响因子作出总结. 重点阐述了磁性碳基复合纳米材料作吸附剂时,其碳前驱体被炭化、活化、磁化以及杂原子改性后获得的磁性碳基材料,通过氢键、π-π作用、静电作用等机制吸附去除TCs;作为催化剂时,磁性碳基材料主要作为基底,负载功能化催化剂,通过激活一些过硫酸盐,促使催化过程中产生活性物种如·O2−、·OH、1O2等,将TCs降解为CO2、H2O或其他小分子物质. 最后,对磁性碳基纳米复合材料未来的研究方向提出一些建议.
-
关键词:
- 磁性碳基复合纳米材料 /
- 四环素类抗生素 /
- 吸附 /
- 降解.
Abstract: In recent years, magnetic carbon-based composite nanomaterials (MCCN) had attracted the attention of many researchers because of their large specific surface area, convenient magnetic separation and recycling. In view of Tetracycline antibiotics (TCs) had strong tolerance and were not easy to decompose in the environment, and long-term accumulation posed a potential threat to human health. Therefore, the application of various new MCCN developed in recent three years was summarized in this study, magnetic carbon composite nano-materials were used as excellent adsorbents and catalysts to remove TCs, and summarized the mechanism and influencing factors of TCs removal in both adsorption and degradation. It was emphasized that when MCCN were used as adsorbents, the carbon precursors are carbonized, activated, magnetized and modified by heteroatoms, and TCs is removed by hydrogen bonding, π-π interaction and electrostatic interaction. As a catalyst, magnetic carbon based materials mainly serve as substrates, loading functionalized catalysts, and activating some persulfates to promote the production of active species during the catalytic process, such as O2−,·OH, 1O2 in the catalytic process, to degrade TCs into CO2 , H2O or other small molecules. Finally, some suggestions on the future research direction of magnetic carbon-based composite nanomaterials were put forward. -
表 1 MCCN吸附去除TCs
Table 1. Removal of TCs by adsorption of MCCN
吸附剂
Adsorbent原料
Raw materials吸附容量 /(mg·g−1)Adsorption
capacity热解温度/℃ Pyrolysis
temperature比表面积/(m2·g−1) Specific
surface area平均孔径/ nm Average pore
size吸附机理
Adsorption mechanism磁性多孔生物炭(MPBC-700) 茶渣[9] 333.22 700 1066.00 — abcd 磁性茶渣生物炭(MKHBC) 茶渣[10] 236.93 700 1035.11 2.51 ab 磁性多孔生物炭(H-Fe-BC) 茶渣[11] 229.30 700 852.00 2.65 abcde 磁性松树皮生物炭(M-PBB) 松树皮[12] 293.32 600 — — e 磁性生物炭(LLB-MB) 丝瓜叶[13] 1755.9 — 2565.4 2.28 abce 磁性酒糟生物炭(V-MFB-MCs-800) 酒糟[14] 323 800 161.174 — abcf 磁性生物炭(HAs/KMBC) 稻草[15] 1743 600 — — bc 磁性杨木生物炭(MPBC) 杨木[16] 89.58 — 122.12 12.24 abcde 磁性生物炭(MBC) 废木耳[17] 42.31 700 333.4 5.50 cd 磁性分级多孔碳(LPC-NC) 莲子盆[18] 506.6 800 1621.3 — bf 磁性多孔碳(N-MPC) 阴离子树脂[19] 603.4 850 781.1 2.86 abc 改性磁性污泥碳(MNSBC) 城市污泥[20] 197.3 700 243 3.56 abe 磁性多孔碳(M-PLAC) 木质素[21] 1306.0 800 252.21 2.99 abce 铁氮共改性生物炭(N-RSBC) 稻草[22] 156.0 700 606.22 2.207 abcde MOF衍生磁性石墨碳(Fein/C-700) Zn-MOF[23] 546.5 700 244.87 — abce 注:a. 孔隙填充; b. π-π作用; c. 氢键; d. 络合作用; e. 静电作用; f. 阳离子-π作用. —. 无数据.
Note: a. Pore filling; b.π-π interaction; c. Hydrogen bonding; d. Complexation; e. Electrostatic action; f. Cation-π interaction.表 2 MCCN高级氧化法降解去除TCs
Table 2. Degradation and removal of TCs by advanced oxidation of MCCN
催化剂
Catalyst
(Abbreviviation)激活对象
Activation
object去除率/%
Removal rate活性物种
Active
species降解产物
Degradation
product降解途径
Degradation
pathway参考文献
Reference铁钴双金属生物炭(BC@CFC) PMS 96.63 SO4−·、·OH CO2、H2O、SO42− 自由基 [27] 磁性气凝胶(SA-Fe) PMS 100.0 1O2 CO2、H2O 非自由基 [28] 磁性介孔碳(MC) PDS 92.9 SO4−·、·O2−、1O2 CO2、H2O 自由基 [29] 磁性石墨生物炭(FeOx@g-BC) H2O2 100.0 1O2、·OH CO2、H2O 自由基和非自由基 [30] 磁性N掺杂铁污泥碳材料(N-BCFe) PMS 86.56 SO4−·、·OH、1O2 CO2、H2O 自由基和非自由基 [31] Co/N共掺杂生物炭(Co-N/KC-900) PMS 99.0 1O2 CO2、H2O 非自由基 [32] N、S共掺杂磁性碳(Fe@NS-C) PMS 91.07 1O2、电子转移 CO2、H2O、NH4+ 非自由基 [33] 磁性生物炭(MBC) PDS 87.2 1O2 — 非自由基 [34] 磁性碳纳米纤维(Fe/Fe3C@NCNF) PMS 100.0 ·O2-、1O2 CO2、H2O 自由基和非自由基 [35] 磁性生物炭(Fe-N@FMC) PDS 90.5 SO4−·、·OH CO2、H2O 自由基 [36] 磁性N掺杂纳米碳(C-Co-TN) PMS 94.0 1O2 CO2、H2O 非自由基 [37] N掺杂磁性碳纳米纤维(MCMs@TiO) — 98.95 ·O2−、·OH CO2、H2O 自由基 [38] Fe3O4/CeO2/g-C3N4(FCG) H2O2 96.63 ·OH CO2、H2O 自由基 [39] g-C3N4/NiFe2O4(CN/NFO) H2O2 78.0 ·O2−、·OH — 自由基 [40] CuFe2O4/g-C3N4(CFO/CN) — 94.0 ·O2−、·OH CO2、H2O 自由基 [41] Fe3O4/g-C3N4/rGO(无) — 86.7 ·O2−、·OH — 自由基 [42] Pd/g-C3N4/Fe3O4(无) — 97.0 h+、·O2− CO2、H2O 自由基和非自由基 [43] MLD/g-C3N4/Fe3O4(无) H2O2 95.8 ·OH CO2、H2O 自由基 [44] g-C3N4/BiOBr/Fe3O4(无) — 100.0 h+、·OH、·O2− CO2、H2O 自由基和非自由基 [45] 注:激活对象中,PMS:过一硫酸盐;PDS:过二硫酸盐.
Note: Among the activated objects, PMS: Persulfate; PDS: Persulphate.表 3 MCCN对TCs的降解途径
Table 3. Degradation pathway of TCs by MCCN
项目
Project激活对象
Activation object自由基
Radical非自由基
Nonradical
官能团及磁性离子H2O2
PMS
PDS·OH
SO4−·和·OH
SO4−·1O2 缺陷 PMS SO4−· — e− — — 直接降解 h+ — — 直接降解 石墨-N、吡啶-N、吡咯-N PMS SO4−· — -
[1] YANG Q L, GAO Y, KE J, et al. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods[J]. Bioengineered, 2021, 12(1): 7376-7416. doi: 10.1080/21655979.2021.1974657 [2] MARKLEY J L, WENCEWICZ T A. Tetracycline-inactivating enzymes[J]. Frontiers in Microbiology, 2018, 9: 1058 doi: 10.3389/fmicb.2018.01058 [3] CAO Y Y, WANG X R, BAI H J, et al. Fluorescent detection of tetracycline in foods based on carbon dots derived from natural red beet pigment[J]. LWT-Food Science and Technology, 2022, 157: 113100. doi: 10.1016/j.lwt.2022.113100 [4] SHENG D H, YING X T, LI R, et al. Polydopamine-mediated modification of ZIF-8 onto magnetic nanoparticles for enhanced tetracycline adsorption from wastewater[J]. Chemosphere, 2022, 308: 136249. doi: 10.1016/j.chemosphere.2022.136249 [5] 龙星宇, 王志敏, 张江群, 等. Fe3O4/GO/ZnO材料的制备及其对盐酸土霉素吸附研究[J]. 贵州师范大学学报(自然科学版), 2023, 41(1): 80-86. LONG X Y, WANG Z M, ZHANG J Q, et al. Preparation of Fe3O4/GO/ZnO materials and their adsorption to oxytetracycline hydrochloride[J]. Journal of Guizhou Normal University (Natural Sciences), 2023, 41(1): 80-86(in Chinese)
[6] LIU Z M, GAO Z M, WU Q. Activation of persulfate by magnetic zirconium-doped manganese ferrite for efficient degradation of tetracycline[J]. Chemical Engineering Journal, 2021, 423: 130283. doi: 10.1016/j.cej.2021.130283 [7] LUO X W, SHEN M X, LIU J H, et al. Resource utilization of piggery sludge to prepare recyclable magnetic biochar for highly efficient degradation of tetracycline through peroxymonosulfate activation[J]. Journal of Cleaner Production, 2021, 294: 126372. doi: 10.1016/j.jclepro.2021.126372 [8] JIANG Y C, LUO M F, NIU Z N, et al. In-situ growth of bimetallic FeCo-MOF on magnetic biochar for enhanced clearance of tetracycline and fruit preservation[J]. Chemical Engineering Journal, 2023, 451: 138804. doi: 10.1016/j.cej.2022.138804 [9] LI B, ZHANG Y, XU J, et al. Facile preparation of magnetic porous biochars from tea waste for the removal of tetracycline from aqueous solutions: Effect of pyrolysis temperature[J]. Chemosphere, 2022, 291: 132713. doi: 10.1016/j.chemosphere.2021.132713 [10] LI B, ZHANG Y, XU J, et al. Simultaneous carbonization, activation, and magnetization for producing tea waste biochar and its application in tetracycline removal from the aquatic environment[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105324. doi: 10.1016/j.jece.2021.105324 [11] ZHANG Y, HUANG Z J, FANG X, et al. Preparation of magnetic porous biochar through hydrothermal pretreatment combined with K2FeO4 activation to improve tetracycline removal[J]. Microporous and Mesoporous Materials, 2022, 343: 112188. doi: 10.1016/j.micromeso.2022.112188 [12] RYENCHINDORJ U, ZAIB Q, PUTRA A S, et al. Production and characterization of cost-effective magnetic pine bark biochar and its application to remove tetracycline from water[J]. Environmental Science and Pollution Research International, 2022, 29(41): 62382-62392. doi: 10.1007/s11356-022-19866-9 [13] SU Y J, ZHENG Y Y, FENG M Q, et al. Magnetic Luffa-leaf-derived hierarchical porous biochar for efficient removal of rhodamine B and tetracycline hydrochloride[J]. International Journal of Molecular Sciences, 2022, 23(24): 15703. doi: 10.3390/ijms232415703 [14] XIANG Y J, ZHOU Y Z, YAO B, et al. Vinasse-based biochar magnetic composites: Adsorptive removal of tetracycline in aqueous solutions[J]. Environmental Science and Pollution Research International, 2023, 30(4): 8916-8927. [15] LI M F, WANG P, HUANG C X, et al. Effect of dissolved humic acids and coated humic acids on tetracycline adsorption by K2CO3-activated magnetic biochar[J]. Scientific Reports, 2022, 12: 18966. doi: 10.1038/s41598-022-22830-9 [16] ZHANG X Z, ZHEN D W, LIU F M, et al. An achieved strategy for magnetic biochar for removal of tetracyclines and fluoroquinolones: Adsorption and mechanism studies[J]. Bioresource Technology, 2023, 369: 128440. doi: 10.1016/j.biortech.2022.128440 [17] GAO F, XU Z X, DAI Y J. Removal of tetracycline from wastewater using magnetic biochar: A comparative study of performance based on the preparation method[J]. Environmental Technology & Innovation, 2021, 24: 101916. [18] WANG T, XUE L, LIU Y H, et al. N self-doped hierarchically porous carbon derived from biomass as an efficient adsorbent for the removal of tetracycline antibiotics[J]. Science of the Total Environment, 2022, 822: 153567. doi: 10.1016/j.scitotenv.2022.153567 [19] ZHU Y T, SHEN J, GUO M L, et al. Nitrogen-doped magnetic porous carbon material from low-cost anion-exchange resin as an efficient adsorbent for tetracyclines in water[J]. Environmental Science and Pollution Research International, 2023, 30(10): 27315-27327. [20] MA Y F, LU T M, TANG J Y, et al. One-pot hydrothermal synthesis of magnetic N-doped sludge biochar for efficient removal of tetracycline from various environmental waters[J]. Separation and Purification Technology, 2022, 297: 121426. doi: 10.1016/j.seppur.2022.121426 [21] TIAN Y X, YIN Y B, JIA Z Y, et al. One-pot preparation of magnetic nitrogen-doped porous carbon from lignin for efficient and selective adsorption of organic pollutants[J]. Environmental Science and Pollution Research International, 2023, 30(6): 14943-14958. [22] MEI Y L, XU J, ZHANG Y, et al. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution[J]. Bioresource Technology, 2021, 325: 124732. doi: 10.1016/j.biortech.2021.124732 [23] HU X, XIE Y J, HE R N, et al. Nano-iron wrapped by graphitic carbon in the carbonaceous matrix for efficient removal of chlortetracycline[J]. Separation and Purification Technology, 2021, 279: 119693. doi: 10.1016/j.seppur.2021.119693 [24] FAN B B, TAN Y, WANG J X, et al. Application of magnetic composites in removal of tetracycline through adsorption and advanced oxidation processes (AOPs): A review[J]. Processes, 2021, 9(9): 1644. doi: 10.3390/pr9091644 [25] 权衡, 牛琳, 时迪, 等. 负载纳米零价铁的铁碳材料制备及其降解抗生素性能研究[J]. 环境科学研究, 2022, 35(12): 2732-2747. QUAN H, NIU L, SHI D, et al. Preparation of iron-carbon materials loaded with nano zero-valent iron and their performance of degrading antibiotics[J]. Research of Environmental Sciences, 2022, 35(12): 2732-2747(in Chinese).
[26] 王婧, 何文宇, 何欣阳, 等. 氧化钴纳米球与低载银的相互作用及其对炭烟氧化的影响[J]. 陕西师范大学学报(自然科学版), 2022, 50(2): 29-37,2. WANG J, HE W Y, HE X Y, et al. The interaction between cobalt oxide nanospheres and low-loaded silver and its effects on soot oxidation[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2022, 50(2): 29-37,2(in Chinese).
[27] YANG W H, JING L Y, WANG T, et al. Multi-level porous layered biochar modified cobalt-iron composite as a reusable synergistic activator of peroxymonosulfate for enhanced tetracycline degradation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132: 104209. doi: 10.1016/j.jtice.2022.104209 [28] NI J X, GAO Y, SUN Y R, et al. High-efficiency removal of antibiotic pollutants by magnetic carbon aerogel: Inherent roles of adsorption synergistic catalysis[J]. Journal of Cleaner Production, 2022, 375: 134105. doi: 10.1016/j.jclepro.2022.134105 [29] ZHANG L B, WANG Y Q, SHI Y H, et al. Heterogeneous catalytic oxidation of tetracycline hydrochloride based on persulfate activated by Fe3O4/MC composite[J]. Chemical Engineering Journal, 2022, 447: 137406. doi: 10.1016/j.cej.2022.137406 [30] ZHANG X, WU H Y, CHEN M, et al. Graphitic biochar with in situ confined magnetic iron oxides via synchronous pyrolysis of lignin as an effective H2O2 activator for fast degradation of organic pollutants[J]. International Journal of Biological Macromolecules, 2022, 205: 329-340. doi: 10.1016/j.ijbiomac.2022.02.076 [31] ZENG H P, LI J X, XU J X, et al. Preparation of magnetic N-doped iron sludge based biochar and its potential for persulfate activation and tetracycline degradation[J]. Journal of Cleaner Production, 2022, 378: 134519. doi: 10.1016/j.jclepro.2022.134519 [32] ZHU H, GUO A, WANG S M, et al. Efficient tetracycline degradation via peroxymonosulfate activation by magnetic Co/N Co-doped biochar: Emphasizing the important role of biochar graphitization[J]. Chemical Engineering Journal, 2022, 450: 138428. doi: 10.1016/j.cej.2022.138428 [33] HE D D, ZHU K, HUANG J, et al. N, S co-doped magnetic mesoporous carbon nanosheets for activating peroxymonosulfate to rapidly degrade tetracycline: Synergistic effect and mechanism[J]. Journal of Hazardous Materials, 2022, 424(Pt C): 127569. [34] XIONG S, DENG Y C, GONG D X, et al. Magnetically modified in situ N-doped Enteromorpha prolifera derived biochar for peroxydisulfate activation: Electron transfer induced singlet oxygen non-radical pathway[J]. Chemosphere, 2021, 284: 131404. doi: 10.1016/j.chemosphere.2021.131404 [35] ZHU K, XIA W, HE D D, et al. Facile fabrication of Fe/Fe3C embedded in N-doped carbon nanofiber for efficient degradation of tetracycline via peroxymonosulfate activation: Role of superoxide radical and singlet oxygen[J]. Journal of Colloid and Interface Science, 2022, 609: 86-101. doi: 10.1016/j.jcis.2021.11.178 [36] ZHUO S N, SUN H, WANG Z Y, et al. A magnetic biochar catalyst with dual active sites of Fe3C and Fe4N derived from floc: The activation mechanism for persulfate on degrading organic pollutant[J]. Chemical Engineering Journal, 2023, 455: 140702. doi: 10.1016/j.cej.2022.140702 [37] LI Q Q, LIU J D, REN Z J, et al. Catalytic degradation of antibiotic by Co nanoparticles encapsulated in nitrogen-doped nanocarbon derived from Co-MOF for promoted peroxymonosulfate activation[J]. Chemical Engineering Journal, 2022, 429: 132269. doi: 10.1016/j.cej.2021.132269 [38] ZHOU Y S, CAI T M, LIU S, et al. N-doped magnetic three-dimensional carbon microspheres@TiO2 with a porous architecture for enhanced degradation of tetracycline and methyl orange via adsorption/photocatalysis synergy[J]. Chemical Engineering Journal, 2021, 411: 128615. doi: 10.1016/j.cej.2021.128615 [39] WANG S, LONG J R, JIANG T, et al. Magnetic Fe3O4/CeO2/g-C3N4 composites with a visible-light response as a high efficiency Fenton photocatalyst to synergistically degrade tetracycline[J]. Separation and Purification Technology, 2021, 278: 119609. doi: 10.1016/j.seppur.2021.119609 [40] LU C Y, WANG J, CAO D L, et al. Synthesis of magnetically recyclable g-C3N4/NiFe2O4 S-scheme heterojunction photocatalyst with promoted visible-light-response photo-Fenton degradation of tetracycline[J]. Materials Research Bulletin, 2023, 158: 112064. doi: 10.1016/j.materresbull.2022.112064 [41] SUN X Y, HUANG L K, WANG G Z, et al. Efficient degradation of tetracycline under the conditions of high-salt and coexisting substances by magnetic CuFe2O4/g-C3N4 photo-Fenton process[J]. Chemosphere, 2022, 308(1): 136204. [42] SHAN J Y, WU X L, LI C F, et al. Photocatalytic degradation of tetracycline hydrochloride by a Fe3O4/g-C3N4/rGO magnetic nanocomposite mechanism: Modeling and optimization[J]. Environmental Science and Pollution Research International, 2023, 30(3): 8098-8109. doi: 10.1007/s11356-022-22770-x [43] XU Q, LIU L, WEI J L, et al. The magnetically separable Pd/C3N4/Fe3O4 nanocomposite as a bifunctional photocatalyst for tetracycline degradation and hydrogen evolution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 641: 128404. doi: 10.1016/j.colsurfa.2022.128404 [44] ZHANG X, REN B, LI X, et al. High-efficiency removal of tetracycline by carbon-bridge-doped g-C3N4/Fe3O4 magnetic heterogeneous catalyst through photo-Fenton process[J]. Journal of Hazardous Materials, 2021, 418: 126333. doi: 10.1016/j.jhazmat.2021.126333 [45] PREEYANGHAA M, DHILEEPAN M D, MADHAVAN J, et al. Revealing the charge transfer mechanism in magnetically recyclable ternary g-C3N4/BiOBr/Fe3O4 nanocomposite for efficient photocatalytic degradation of tetracycline antibiotics[J]. Chemosphere, 2022, 303(2): 135070. [46] 王廷媛, 尚越, 龙星宇. Fe3O4@SiO2@CeO2应用于废水中亚甲基蓝的吸附研究[J]. 贵州师范大学学报(自然科学版), 2021, 39(5): 22-28. WANG T Y, SHANG Y, LONG X Y. Study on the adsorption of Methylene blue from wastewater by Fe3O4@SiO2@CeO2[J]. Journal of Guizhou Normal University (Natural Sciences), 2021, 39(5): 22-28(in Chinese).
[47] 孔婷, 张金牛, 姜紫赫, 等. BiOI光催化性能的调控机制[J]. 陕西师范大学学报(自然科学版), 2022, 50(1): 43-52. KONG T, ZHANG J N, JIANG Z H, et al. Regulation mechanism of BiOI photocatalytic performance[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2022, 50(1): 43-52(in Chinese).
[48] ZHAI W J, HE J F, HU S T, et al. Enhanced photocatalytic degradation of tetracycline over magnetic La0.7Sr0.3MnO3/g-C3N4 p-n heterojunction arising from the synergistic effects of oxygen vacancy defects and high-potential photogenerated electrons[J]. Journal of Alloys and Compounds, 2022, 918: 165699. doi: 10.1016/j.jallcom.2022.165699