[1] |
YANG Q L, GAO Y, KE J, et al. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods[J]. Bioengineered, 2021, 12(1): 7376-7416. doi: 10.1080/21655979.2021.1974657
|
[2] |
MARKLEY J L, WENCEWICZ T A. Tetracycline-inactivating enzymes[J]. Frontiers in Microbiology, 2018, 9: 1058 doi: 10.3389/fmicb.2018.01058
|
[3] |
CAO Y Y, WANG X R, BAI H J, et al. Fluorescent detection of tetracycline in foods based on carbon dots derived from natural red beet pigment[J]. LWT-Food Science and Technology, 2022, 157: 113100. doi: 10.1016/j.lwt.2022.113100
|
[4] |
SHENG D H, YING X T, LI R, et al. Polydopamine-mediated modification of ZIF-8 onto magnetic nanoparticles for enhanced tetracycline adsorption from wastewater[J]. Chemosphere, 2022, 308: 136249. doi: 10.1016/j.chemosphere.2022.136249
|
[5] |
龙星宇, 王志敏, 张江群, 等. Fe3O4/GO/ZnO材料的制备及其对盐酸土霉素吸附研究[J]. 贵州师范大学学报(自然科学版), 2023, 41(1): 80-86.
LONG X Y, WANG Z M, ZHANG J Q, et al. Preparation of Fe3O4/GO/ZnO materials and their adsorption to oxytetracycline hydrochloride[J]. Journal of Guizhou Normal University (Natural Sciences), 2023, 41(1): 80-86(in Chinese)
|
[6] |
LIU Z M, GAO Z M, WU Q. Activation of persulfate by magnetic zirconium-doped manganese ferrite for efficient degradation of tetracycline[J]. Chemical Engineering Journal, 2021, 423: 130283. doi: 10.1016/j.cej.2021.130283
|
[7] |
LUO X W, SHEN M X, LIU J H, et al. Resource utilization of piggery sludge to prepare recyclable magnetic biochar for highly efficient degradation of tetracycline through peroxymonosulfate activation[J]. Journal of Cleaner Production, 2021, 294: 126372. doi: 10.1016/j.jclepro.2021.126372
|
[8] |
JIANG Y C, LUO M F, NIU Z N, et al. In-situ growth of bimetallic FeCo-MOF on magnetic biochar for enhanced clearance of tetracycline and fruit preservation[J]. Chemical Engineering Journal, 2023, 451: 138804. doi: 10.1016/j.cej.2022.138804
|
[9] |
LI B, ZHANG Y, XU J, et al. Facile preparation of magnetic porous biochars from tea waste for the removal of tetracycline from aqueous solutions: Effect of pyrolysis temperature[J]. Chemosphere, 2022, 291: 132713. doi: 10.1016/j.chemosphere.2021.132713
|
[10] |
LI B, ZHANG Y, XU J, et al. Simultaneous carbonization, activation, and magnetization for producing tea waste biochar and its application in tetracycline removal from the aquatic environment[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105324. doi: 10.1016/j.jece.2021.105324
|
[11] |
ZHANG Y, HUANG Z J, FANG X, et al. Preparation of magnetic porous biochar through hydrothermal pretreatment combined with K2FeO4 activation to improve tetracycline removal[J]. Microporous and Mesoporous Materials, 2022, 343: 112188. doi: 10.1016/j.micromeso.2022.112188
|
[12] |
RYENCHINDORJ U, ZAIB Q, PUTRA A S, et al. Production and characterization of cost-effective magnetic pine bark biochar and its application to remove tetracycline from water[J]. Environmental Science and Pollution Research International, 2022, 29(41): 62382-62392. doi: 10.1007/s11356-022-19866-9
|
[13] |
SU Y J, ZHENG Y Y, FENG M Q, et al. Magnetic Luffa-leaf-derived hierarchical porous biochar for efficient removal of rhodamine B and tetracycline hydrochloride[J]. International Journal of Molecular Sciences, 2022, 23(24): 15703. doi: 10.3390/ijms232415703
|
[14] |
XIANG Y J, ZHOU Y Z, YAO B, et al. Vinasse-based biochar magnetic composites: Adsorptive removal of tetracycline in aqueous solutions[J]. Environmental Science and Pollution Research International, 2023, 30(4): 8916-8927.
|
[15] |
LI M F, WANG P, HUANG C X, et al. Effect of dissolved humic acids and coated humic acids on tetracycline adsorption by K2CO3-activated magnetic biochar[J]. Scientific Reports, 2022, 12: 18966. doi: 10.1038/s41598-022-22830-9
|
[16] |
ZHANG X Z, ZHEN D W, LIU F M, et al. An achieved strategy for magnetic biochar for removal of tetracyclines and fluoroquinolones: Adsorption and mechanism studies[J]. Bioresource Technology, 2023, 369: 128440. doi: 10.1016/j.biortech.2022.128440
|
[17] |
GAO F, XU Z X, DAI Y J. Removal of tetracycline from wastewater using magnetic biochar: A comparative study of performance based on the preparation method[J]. Environmental Technology & Innovation, 2021, 24: 101916.
|
[18] |
WANG T, XUE L, LIU Y H, et al. N self-doped hierarchically porous carbon derived from biomass as an efficient adsorbent for the removal of tetracycline antibiotics[J]. Science of the Total Environment, 2022, 822: 153567. doi: 10.1016/j.scitotenv.2022.153567
|
[19] |
ZHU Y T, SHEN J, GUO M L, et al. Nitrogen-doped magnetic porous carbon material from low-cost anion-exchange resin as an efficient adsorbent for tetracyclines in water[J]. Environmental Science and Pollution Research International, 2023, 30(10): 27315-27327.
|
[20] |
MA Y F, LU T M, TANG J Y, et al. One-pot hydrothermal synthesis of magnetic N-doped sludge biochar for efficient removal of tetracycline from various environmental waters[J]. Separation and Purification Technology, 2022, 297: 121426. doi: 10.1016/j.seppur.2022.121426
|
[21] |
TIAN Y X, YIN Y B, JIA Z Y, et al. One-pot preparation of magnetic nitrogen-doped porous carbon from lignin for efficient and selective adsorption of organic pollutants[J]. Environmental Science and Pollution Research International, 2023, 30(6): 14943-14958.
|
[22] |
MEI Y L, XU J, ZHANG Y, et al. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution[J]. Bioresource Technology, 2021, 325: 124732. doi: 10.1016/j.biortech.2021.124732
|
[23] |
HU X, XIE Y J, HE R N, et al. Nano-iron wrapped by graphitic carbon in the carbonaceous matrix for efficient removal of chlortetracycline[J]. Separation and Purification Technology, 2021, 279: 119693. doi: 10.1016/j.seppur.2021.119693
|
[24] |
FAN B B, TAN Y, WANG J X, et al. Application of magnetic composites in removal of tetracycline through adsorption and advanced oxidation processes (AOPs): A review[J]. Processes, 2021, 9(9): 1644. doi: 10.3390/pr9091644
|
[25] |
权衡, 牛琳, 时迪, 等. 负载纳米零价铁的铁碳材料制备及其降解抗生素性能研究[J]. 环境科学研究, 2022, 35(12): 2732-2747.
QUAN H, NIU L, SHI D, et al. Preparation of iron-carbon materials loaded with nano zero-valent iron and their performance of degrading antibiotics[J]. Research of Environmental Sciences, 2022, 35(12): 2732-2747(in Chinese).
|
[26] |
王婧, 何文宇, 何欣阳, 等. 氧化钴纳米球与低载银的相互作用及其对炭烟氧化的影响[J]. 陕西师范大学学报(自然科学版), 2022, 50(2): 29-37,2.
WANG J, HE W Y, HE X Y, et al. The interaction between cobalt oxide nanospheres and low-loaded silver and its effects on soot oxidation[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2022, 50(2): 29-37,2(in Chinese).
|
[27] |
YANG W H, JING L Y, WANG T, et al. Multi-level porous layered biochar modified cobalt-iron composite as a reusable synergistic activator of peroxymonosulfate for enhanced tetracycline degradation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132: 104209. doi: 10.1016/j.jtice.2022.104209
|
[28] |
NI J X, GAO Y, SUN Y R, et al. High-efficiency removal of antibiotic pollutants by magnetic carbon aerogel: Inherent roles of adsorption synergistic catalysis[J]. Journal of Cleaner Production, 2022, 375: 134105. doi: 10.1016/j.jclepro.2022.134105
|
[29] |
ZHANG L B, WANG Y Q, SHI Y H, et al. Heterogeneous catalytic oxidation of tetracycline hydrochloride based on persulfate activated by Fe3O4/MC composite[J]. Chemical Engineering Journal, 2022, 447: 137406. doi: 10.1016/j.cej.2022.137406
|
[30] |
ZHANG X, WU H Y, CHEN M, et al. Graphitic biochar with in situ confined magnetic iron oxides via synchronous pyrolysis of lignin as an effective H2O2 activator for fast degradation of organic pollutants[J]. International Journal of Biological Macromolecules, 2022, 205: 329-340. doi: 10.1016/j.ijbiomac.2022.02.076
|
[31] |
ZENG H P, LI J X, XU J X, et al. Preparation of magnetic N-doped iron sludge based biochar and its potential for persulfate activation and tetracycline degradation[J]. Journal of Cleaner Production, 2022, 378: 134519. doi: 10.1016/j.jclepro.2022.134519
|
[32] |
ZHU H, GUO A, WANG S M, et al. Efficient tetracycline degradation via peroxymonosulfate activation by magnetic Co/N Co-doped biochar: Emphasizing the important role of biochar graphitization[J]. Chemical Engineering Journal, 2022, 450: 138428. doi: 10.1016/j.cej.2022.138428
|
[33] |
HE D D, ZHU K, HUANG J, et al. N, S co-doped magnetic mesoporous carbon nanosheets for activating peroxymonosulfate to rapidly degrade tetracycline: Synergistic effect and mechanism[J]. Journal of Hazardous Materials, 2022, 424(Pt C): 127569.
|
[34] |
XIONG S, DENG Y C, GONG D X, et al. Magnetically modified in situ N-doped Enteromorpha prolifera derived biochar for peroxydisulfate activation: Electron transfer induced singlet oxygen non-radical pathway[J]. Chemosphere, 2021, 284: 131404. doi: 10.1016/j.chemosphere.2021.131404
|
[35] |
ZHU K, XIA W, HE D D, et al. Facile fabrication of Fe/Fe3C embedded in N-doped carbon nanofiber for efficient degradation of tetracycline via peroxymonosulfate activation: Role of superoxide radical and singlet oxygen[J]. Journal of Colloid and Interface Science, 2022, 609: 86-101. doi: 10.1016/j.jcis.2021.11.178
|
[36] |
ZHUO S N, SUN H, WANG Z Y, et al. A magnetic biochar catalyst with dual active sites of Fe3C and Fe4N derived from floc: The activation mechanism for persulfate on degrading organic pollutant[J]. Chemical Engineering Journal, 2023, 455: 140702. doi: 10.1016/j.cej.2022.140702
|
[37] |
LI Q Q, LIU J D, REN Z J, et al. Catalytic degradation of antibiotic by Co nanoparticles encapsulated in nitrogen-doped nanocarbon derived from Co-MOF for promoted peroxymonosulfate activation[J]. Chemical Engineering Journal, 2022, 429: 132269. doi: 10.1016/j.cej.2021.132269
|
[38] |
ZHOU Y S, CAI T M, LIU S, et al. N-doped magnetic three-dimensional carbon microspheres@TiO2 with a porous architecture for enhanced degradation of tetracycline and methyl orange via adsorption/photocatalysis synergy[J]. Chemical Engineering Journal, 2021, 411: 128615. doi: 10.1016/j.cej.2021.128615
|
[39] |
WANG S, LONG J R, JIANG T, et al. Magnetic Fe3O4/CeO2/g-C3N4 composites with a visible-light response as a high efficiency Fenton photocatalyst to synergistically degrade tetracycline[J]. Separation and Purification Technology, 2021, 278: 119609. doi: 10.1016/j.seppur.2021.119609
|
[40] |
LU C Y, WANG J, CAO D L, et al. Synthesis of magnetically recyclable g-C3N4/NiFe2O4 S-scheme heterojunction photocatalyst with promoted visible-light-response photo-Fenton degradation of tetracycline[J]. Materials Research Bulletin, 2023, 158: 112064. doi: 10.1016/j.materresbull.2022.112064
|
[41] |
SUN X Y, HUANG L K, WANG G Z, et al. Efficient degradation of tetracycline under the conditions of high-salt and coexisting substances by magnetic CuFe2O4/g-C3N4 photo-Fenton process[J]. Chemosphere, 2022, 308(1): 136204.
|
[42] |
SHAN J Y, WU X L, LI C F, et al. Photocatalytic degradation of tetracycline hydrochloride by a Fe3O4/g-C3N4/rGO magnetic nanocomposite mechanism: Modeling and optimization[J]. Environmental Science and Pollution Research International, 2023, 30(3): 8098-8109. doi: 10.1007/s11356-022-22770-x
|
[43] |
XU Q, LIU L, WEI J L, et al. The magnetically separable Pd/C3N4/Fe3O4 nanocomposite as a bifunctional photocatalyst for tetracycline degradation and hydrogen evolution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 641: 128404. doi: 10.1016/j.colsurfa.2022.128404
|
[44] |
ZHANG X, REN B, LI X, et al. High-efficiency removal of tetracycline by carbon-bridge-doped g-C3N4/Fe3O4 magnetic heterogeneous catalyst through photo-Fenton process[J]. Journal of Hazardous Materials, 2021, 418: 126333. doi: 10.1016/j.jhazmat.2021.126333
|
[45] |
PREEYANGHAA M, DHILEEPAN M D, MADHAVAN J, et al. Revealing the charge transfer mechanism in magnetically recyclable ternary g-C3N4/BiOBr/Fe3O4 nanocomposite for efficient photocatalytic degradation of tetracycline antibiotics[J]. Chemosphere, 2022, 303(2): 135070.
|
[46] |
王廷媛, 尚越, 龙星宇. Fe3O4@SiO2@CeO2应用于废水中亚甲基蓝的吸附研究[J]. 贵州师范大学学报(自然科学版), 2021, 39(5): 22-28.
WANG T Y, SHANG Y, LONG X Y. Study on the adsorption of Methylene blue from wastewater by Fe3O4@SiO2@CeO2[J]. Journal of Guizhou Normal University (Natural Sciences), 2021, 39(5): 22-28(in Chinese).
|
[47] |
孔婷, 张金牛, 姜紫赫, 等. BiOI光催化性能的调控机制[J]. 陕西师范大学学报(自然科学版), 2022, 50(1): 43-52.
KONG T, ZHANG J N, JIANG Z H, et al. Regulation mechanism of BiOI photocatalytic performance[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2022, 50(1): 43-52(in Chinese).
|
[48] |
ZHAI W J, HE J F, HU S T, et al. Enhanced photocatalytic degradation of tetracycline over magnetic La0.7Sr0.3MnO3/g-C3N4 p-n heterojunction arising from the synergistic effects of oxygen vacancy defects and high-potential photogenerated electrons[J]. Journal of Alloys and Compounds, 2022, 918: 165699. doi: 10.1016/j.jallcom.2022.165699
|