-
乙烯(C2H4)是一种自然界中广泛存在的内源性植物激素,它能促进色素、香气等物质在果蔬中的积累,改善果蔬的色泽、风味和口感[1],因此可作为催熟剂应用于果蔬的生产和种植中[2]. 但同时,由于乙烯可以促进呼吸酶的氧化作用[3],即使在低温下,微量乙烯也会导致储藏室和冰箱中新鲜的产品逐渐成熟和变质[4 − 5],使得果蔬的贮藏保鲜期缩短. 因此,清除低温储存环境中的乙烯可有效维持水果和蔬菜的品质,延长货架期,具有很大的商业价值.
目前已开发出的乙烯脱除方法,主要可分为物理吸附[6 − 8]、化学氧化[9 − 10]和催化氧化[6,11 − 13]等. 催化氧化法与其他方法相比具有运行成本低、重复使用性高、转化效率高等优势[14],而低温催化氧化又因反应条件温和,适用于产品保鲜条件下的乙烯脱除,因此意义重大[15]. 研究发现Pt基催化剂相比于Pd、Au和Ag等金属催化剂拥有更高的乙烯催化氧化活性,并且在较长的反应时间和循环使用中表现出优异的耐久性[16],因此被选为本次研究的活性金属. 同时SBA-15[17]具有出色的热稳定性和机械稳定性,其限域作用会使得金属前驱体盐在煅烧分解和还原过程中不易团聚,得到分散性较好的金属颗粒[18],在乙烯催化氧化中表现出高活性[19],因此被选为本研究的载体.
鉴于催化剂表面水分子的物理吸附是导致催化剂失活的关键因素[20],因而调节催化剂表面的疏水性是十分必要的. 目前对催化材料的表面进行改性以提高其疏水性的策略已经被开发并证明是有效的[21 − 22],但其中多数研究都存在操作复杂、回收率低、需要使用大量有机试剂等诸多问题[23],因此仍需要开发一种简便、高效的技术提高催化剂表面的疏水性以改善催化剂低温催化氧化乙烯的活性.
本文采用浸渍法将1% Pt负载到SBA-15上,并使用硅烷偶联剂(三甲基氯硅烷,TMCS)对催化剂进行甲基硅烷化改性,以获得疏水型低温乙烯催化氧化剂. 对催化剂在0 oC下氧化痕量乙烯(0.005%)的效率进行了研究,并通过调整TMCS用量以确定最佳甲基硅烷化剂量,以期提升催化剂低温催化氧化乙烯效果,为构建高效疏水催化剂提供支撑.
甲基硅烷化改性显著促进乙烯在Pt/SBA-15上的低温催化氧化
Enhanced low-temperature catalytic oxidation of ethylene on Pt/SBA-15 by methylsilylation modification
-
摘要: 以介孔分子筛SBA-15为载体,采用浸渍法制备Pt基催化剂,通过三甲基氯硅烷(TMCS)对催化剂进行表面改性以提高其疏水性. 表征结果表明甲基硅烷化显著促进了催化剂的表面疏水性. 乙烯的低温催化氧化结果显示,随着TMCS接枝量的增加,催化剂的反应活性呈现火山型变化规律. Pt/SBA-15-TMCS (1:6)的催化活性最高,能够保持约1 h对痕量乙烯100%的催化氧化效果,3 h后仍有29%的乙烯转化率,相比于Pt/SBA-15有显著提升. 适量TMCS的改性带来的催化剂疏水性的改善能够有效抑制反应过程中水分子吸附对催化剂的不利影响,而过量TMCS的修饰则易团聚形成大颗粒堵塞介孔孔道,减少乙烯分子与活性位点的接触,降低催化效果.Abstract: We prepared Pt based catalysts by the impregnation method using SBA-15 as the support, and the catalysts were surface modified by trimethylchlorosilane to improve their hydrophobicity. The characterization results indicated that surface modification remarkably enhanced the surface hydrophobicity of the catalysts. The results of low-temperature catalytic oxidation of ethylene showed that with the increase of TMCS dosage, the catalytic activity of the catalyst displayed a volcano-type variation. Among the test catalysts, Pt/SBA-15-TMCS (1:6) showed the highest catalytic activity, maintaining 100% conversion of trace ethylene for approximately 1 h and 29% ethylene conversion even after 3 h, which was significantly improved as compared with Pt/SBA-15. The improvement in hydrophobicity of the catalyst from the modification by a moderate amount of TMCS can effectively inhibit the adverse effect of water molecule adsorption on the catalyst during the reaction, whereas the modification of excessive TMCS tends to agglomerate and form large particles that block the mesoporous pores, reducing the contact between ethylene and the active sites, giving rise to low catalytic activity.
-
Key words:
- low temperature catalytic oxidation /
- ethylene /
- Pt/SBA-15 /
- surface modification.
-
表 1 催化剂的结构性质
Table 1. Structure properties of the catalysts
催化剂
CatalystSBET/(m2·g−1) Vmeso/(cm3·g−1) dmeso/nm Pt/SBA-15 832 1.33 5.89 Pt/SBA-15-TMCS (1:12) 587 0.96 5.84 Pt/SBA-15-TMCS (1:6) 484 0.80 5.67 Pt/SBA-15-TMCS (1:3) 381 0.67 5.29 -
[1] 魏军亚, 耿沙, 刘跃威, 等. 乙烯利处理对采后宝岛蕉果实后熟期品质的影响[J]. 热带农业科学, 2021, 41(1): 68-73. WEI J Y, GENG S, LIU Y W, et al. Effects of ethephon treatment on the quality of postharvest banana fruits in Baodao[J]. Chinese Journal of Tropical Agriculture, 2021, 41(1): 68-73 (in Chinese).
[2] WANG L K, ZHANG F, QIAO H. Chromatin regulation in the response of ethylene: Nuclear events in ethylene signaling[J]. Small Methods, 2020, 4(8): 1900288. doi: 10.1002/smtd.201900288 [3] HAYAMA H, TATSUKI M, ITO A, et al. Ethylene and fruit softening in the stony hard mutation in peach[J]. Postharvest Biology and Technology, 2006, 41(1): 16-21. doi: 10.1016/j.postharvbio.2006.03.006 [4] ROMANAZZI G, FELIZIANI E, BAÑOS S B, et al. Shelf life extension of fresh fruit and vegetables by chitosan treatment[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(3): 579-601. doi: 10.1080/10408398.2014.900474 [5] KUMAR D, KALITA P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries[J]. Foods, 2017, 6(1): 8. doi: 10.3390/foods6010008 [6] RAJE L, SHERLEKAR S, RAMAKRISHNAN K, et al. Post harvest preservation of mangoes by controlled chemical release agents and adsorbent[J]. Acta Horticulturae, 1997(455): 622-628. doi: 10.17660/ActaHortic.1997.455.80 [7] KELLER N, DUCAMP M N, ROBERT D, et al. Ethylene removal and fresh product storage: A challenge at the frontiers of chemistry. toward an approach by photocatalytic oxidation[J]. Chemical Reviews, 2013, 113(7): 5029-5070. doi: 10.1021/cr900398v [8] JANJARASSKUL T, SUPPAKUL P. Active and intelligent packaging: The indication of quality and safety[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(5): 808-831. doi: 10.1080/10408398.2016.1225278 [9] 黄邦彦, 李为为, 吴立, 等. 乙烯吸收剂延长香蕉贮运寿命的研究与应用[J]. 热带作物学报, 1988, 9(2): 69-74. HUANG B Y, LI W W, WU L, et al. Studies on the use of ethylene absorbents to prolong storage life of bananas[J]. Chinese Journal of Tropical Crops, 1988, 9(2): 69-74 (in Chinese).
[10] 陈存坤, 高芙蓉, 薛文通, 等. 臭氧处理对新疆厚皮甜瓜贮藏品质和生理特性的影响[J]. 食品科学, 2016, 37(20): 215-220. doi: 10.7506/spkx1002-6630-201620037 CHEN C K, GAO F R, XUE W T, et al. Effects of ozone treatment on storage quality and physiological characteristics of Xinjiang thick-skinned melon[J]. Food Science, 2016, 37(20): 215-220 (in Chinese). doi: 10.7506/spkx1002-6630-201620037
[11] MARTÍNEZ-ROMERO D, BAILÉN G, SERRANO M, et al. Tools to maintain postharvest fruit and vegetable quality through the inhibition of ethylene action: A review[J]. Critical Reviews in Food Science and Nutrition, 2007, 47(6): 543-560. doi: 10.1080/10408390600846390 [12] 张桦, 曹美秋, 许哲生, 等. 常温下CO氧化催化剂的研究[J]. 环境化学, 1984, 3(6): 42-48. ZHANG H, CAO M Q, XU Z S, et al. Study on CO oxidation catalyst at room temperature[J]. Environmental Chemistry, 1984, 3(6): 42-48 (in Chinese).
[13] 劳彩娴, 卢立新. TiO2/ACF的制备及其光催化降解乙烯的性能研究[J]. 现代化工, 2020, 40(1): 185-188. LAO C X, LU L X. Preparation of TiO2/ACF and study on its photo-catalytic performance in degradation of ethylene[J]. Modern Chemical Industry, 2020, 40(1): 185-188 (in Chinese).
[14] WEI H Y, SEIDI F, ZHANG T W, et al. Ethylene scavengers for the preservation of fruits and vegetables: A review[J]. Food Chemistry, 2021, 337: 127750. doi: 10.1016/j.foodchem.2020.127750 [15] QI Y, LI C L, LI H, et al. Elimination or removal of ethylene for fruit and vegetable storage via low-temperature catalytic oxidation[J]. Journal of Agricultural and Food Chemistry, 2021, 69(36): 10419-10439. doi: 10.1021/acs.jafc.1c02868 [16] JIANG C X, HARA K, FUKUOKA A. Low-temperature oxidation of ethylene over platinum nanoparticles supported on mesoporous silica[J]. Angewandte Chemie International Edition, 2013, 52(24): 6265-6268. doi: 10.1002/anie.201300496 [17] ZHAO D, FENG J, HUO Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548-552. doi: 10.1126/science.279.5350.548 [18] 杨梦婷, 肖笑傲, 施宜春, 等. 用于甲烷二氧化碳重整的Ni/SBA-15催化剂的研究进展[J]. 应用化工, 2020, 49(增刊2): 227-233. YANG M T, XIAO X A, SHI Y C, et al. Research progress of Ni/SBA-15 catalyst for methane carbon dioxide reforming[J]. Applied Chemical Industry, 2020, 49(Sup 2): 227-233 (in Chinese).
[19] SATTER S S, HIRAYAMA J, KOBAYASHI H, et al. Water-resistant Pt sites in hydrophobic mesopores effective for low-temperature ethylene oxidation[J]. ACS Catalysis, 2020, 10(22): 13257-13268. doi: 10.1021/acscatal.0c02816 [20] SATTER S S, YOKOYA T, HIRAYAMA J, et al. Oxidation of trace ethylene at 0 ℃ over platinum nanoparticles supported on silica[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11480-11486. [21] RUDDY D A, TILLEY T D. Highly selective olefin epoxidation with aqueous H2O2 over surface-modified TaSBA15 prepared via the TMP method[J]. Chemical Communications, 2007(32): 3350-3352. doi: 10.1039/b706443h [22] SATTER S S, HIRAYAMA J, NAKAJIMA K, et al. Low temperature oxidation of trace ethylene over Pt nanoparticles supported on hydrophobic mesoporous silica[J]. Chemistry Letters, 2018, 47(8): 1000-1002. doi: 10.1246/cl.180364 [23] 蒋平, 马丽, 潘剑, 等. 化学气相沉积三甲基氯硅烷制备两亲性HZSM-5沸石[J]. 催化学报, 2009, 30(6): 503-508. doi: 10.3321/j.issn:0253-9837.2009.06.006 JIANG P, MA L, PAN J, et al. Preparation of amphiphilic HZSM-5 zeolite by chemical vapor deposition of trimethylchlorosilane[J]. Chinese Journal of Catalysis, 2009, 30(6): 503-508 (in Chinese). doi: 10.3321/j.issn:0253-9837.2009.06.006
[24] ZHAO D Y, HUO Q S, FENG J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. Journal of the American Chemical Society, 1998, 120(24): 6024-6036. doi: 10.1021/ja974025i [25] ZHANG L X, SHI J L, YU J, et al. A new In-situ reduction route for the synthesis of Pt nanoclusters in the channels of mesoporous silica SBA-15[J]. Advanced Materials, 2002, 14(20): 1510-1513. doi: 10.1002/1521-4095(20021016)14:20<1510::AID-ADMA1510>3.0.CO;2-W [26] HARA K, AKAHANE S, WIENCH J W, et al. Selective and efficient silylation of mesoporous silica: A quantitative assessment of synthetic strategies by solid-state NMR[J]. The Journal of Physical Chemistry C, 2012, 116(12): 7083-7090. doi: 10.1021/jp300580f [27] LU Z Q, LI J M, FU X L, et al. Superhydrophobic Pt@SBA-15 catalyst for hydrogen water isotope exchange reactions[J]. International Journal of Hydrogen Energy, 2022, 47(41): 18080-18087. doi: 10.1016/j.ijhydene.2022.03.279 [28] JARONIEC C P, KRUK M, JARONIEC M, et al. Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes[J]. The Journal of Physical Chemistry B, 1998, 102(28): 5503-5510. doi: 10.1021/jp981304z