-
亚硝胺是使用氯化化学品对含有有机胺的水进行消毒以及药品、橡胶和塑料生产过程中产生的有害副产物,其对水源的污染引起了各个国家的广泛重视[1 − 2]. 其中N-二甲基亚硝胺(NDMA)是许多国家饮用水系统中检出最多的亚硝胺,对饮用水安全造成了较大的隐患[3 − 4]. NDMA前体可来自城市废水排放的有机物、富营养化水体中的藻类有机物、药品和个人护理产品(PPCPs)以及胺基水处理聚合物. 加利福尼亚州的NDMA排放限值为 10 ng·L−1,公共卫生目标为 3 ng·L−1[5],突出了识别 NDMA 前体以及降低NDMA排放率的必要性.
含氮消毒副产物(N-DBPs)具有比碳基消毒副产物(C-DBPs)更高的遗传毒性和细胞毒性,可对生物体的消化系统、神经系统造成损害[6 − 7]. 鉴于其危害,NDMA等亚硝胺已被广泛研究. 目前,NDMA的去除方法主要有活性炭吸附法、微生物法、微滤(MF)和反渗透(RO)膜法,高级氧化法等[7 − 11]. 催化加氢还原技术是一种简单高效、可操作性强的处理消毒副产物的方法,该技术主要是在催化剂作用下,氢气等氢源被活化为氢物种,污染物与氢物种发生氧化还原反应,使得污染物被还原或碳卤键断裂释放卤素原子的技术[12 − 13],具有绿色高效的特点. 常用催化剂一般为负载型催化剂,其中贵金属主要Pt、Pd、Ru等,载体有Al2O3、SiO2、SBA-15等,现已被应用于NO3−[14]、Cr(Ⅵ)[15]等高价无机盐离子的还原,氯乙酸[16]、四溴双酚A[17]的脱卤反应等.
载体的性质是决定负载型金属催化剂催化活性的关键因素. 载体会影响表面活性金属的电子状态,或参与反应以实现更多的动力学途径[18 − 19]. 氧化铈是一种重要的稀土氧化物,CeO2基催化剂较其他碳载体及非金属氧化物载体制备催化剂有着优异的氧化还原性能和电荷转移效应,在多相催化等领域得到了广泛的应用. 不同晶面的CeO2会显著影响催化剂的性能,如表面稳定性,氧空位形成能,以及与负载贵金属之间的相互作用[20 − 21]. 尽管对CeO2形态-反应活性关系的研究已经取得了很大进展,但所研究的催化反应主要是氧化反应[22 − 23],而CeO2形态对NDMA的液相加氢还原反应等其他反应的研究还未见报道.
本文通过调变水热温度合成了纳米棒(NR)、纳米立方体(NC)、纳米八面体(NO)的CeO2载体,采用沉淀沉积法制备了不同形貌载体负载的Ru基催化剂,将其应用于水中NDMA的液相催化加氢还原,探究了不同形貌载体在不同反应条件下对催化剂活性的影响以及催化剂稳定性的变化. 尝试通过寻找具有更强金属-载体相互作用的催化剂,研究催化剂结构性质与催化活性之间的关系,对于高效去除水中污染物具有重要意义.
CeO2形貌对Ru/CeO2液相催化还原N-二甲基亚硝胺的影响
Effect of CeO2 morphology on Ru/CeO2 for liquid phase catalytic reduction of N-nitrosodimethylamine
-
摘要: 采用3种不同形貌的氧化铈(立方体c-CeO2、棒状r-CeO2与八面体o-CeO2)为载体,采用沉淀沉积法制备了Ru/CeO2催化剂,并研究了水中N-二甲基亚硝胺(NDMA)的催化加氢还原反应. 结果表明,3种催化剂的NDMA还原活性顺序为Ru/c-CeO2>Ru/o-CeO2>Ru/r-CeO2. XPS、拉曼等表征结果显示,Ru/c-CeO2具有较高的Run+和适量的氧空位含量,其金属-载体相互作用最强,具有最高的还原活性. NDMA液相催化还原反应符合朗格缪尔-欣谢尔伍德模型,NDMA在催化表面的吸附是反应的控制步骤. 催化剂对NDMA催化还原效率随着pH的升高呈倒火山型变化. 催化剂经过5次循环利用后,仍有较好的催化活性.
-
关键词:
- 液相催化加氢 /
- N-二甲基亚硝胺(NDMA) /
- Ru/CeO2 /
- 金属-载体相互作用.
Abstract: Ru/CeO2 catalysts were prepared by precipitation deposition method using three ceria oxides with different morphologies (cubic-CeO2, rod-CeO2 and octahedral-CeO2) as supports, and the catalytic hydrogenation reduction of N-dimethylnitrosamine (NDMA) was studied in water. The results show that the removal efficiency of NDMA on the three catalysts follows Ru/c-CeO2 > Ru/o-CeO2 > Ru/r-CeO2. The characterization results of XPS and Raman show that Ru/c-CeO2 has higher Run+ and appropriate oxygen vacancy content, which has stronger metal support interaction and higher reduction activity than other catalysts. The NDMA liquid phase catalytic reduction reaction conforms to the Langmuir-Hinshelwood model, and the conversion of adsorbed NDMA on the catalytic surface is the rate-determining step. The liquid phase catalytic reduction of N-nitrosodimethylamine on Ru/CeO2 shows an inverted volcanic change with the increase of pH. The catalyst still has good catalytic activity after five cycles. -
表 1 催化剂中Ru、Ce含量占比及氧空位比值
Table 1. The content of Ru,Ce in catalysts and Ce3+/Ce4+, OV/OL
催化剂
CatalystRu0/% Ru4+/% Ru6+/% Ce3+/% Ce3+/Ce4+ OV/OL Ru/c-CeO2 5.35 40.47 54.18 27.4 0.38 0.99 Ru/r-CeO2 13.14 46.84 40.02 27.7 0.38 0.97 Ru/o-CeO2 49.47 22.90 27.63 30.8 0.45 5.52 注:含量计算在同元素间进行. -
[1] SGROI M, ROCCARO P, OELKER G, et al. N-nitrosodimethylamine (NDMA) formation during ozonation of wastewater and water treatment polymers[J]. Chemosphere, 2016, 144: 1618-1623. doi: 10.1016/j.chemosphere.2015.10.023 [2] 蔡宏铨, 裴赛峰, 张昀, 等. 我国城市饮用水中N-亚硝基二甲胺分布水平与健康风险评估[J]. 环境与职业医学, 2021, 38(11): 1231-1236,1243. CAI H Q, PEI S F, ZHANG Y, et al. Distribution and health risk assessment of N-nitrosodimethylamine in urban drinking water in China[J]. Journal of Environmental and Occupational Medicine, 2021, 38(11): 1231-1236,1243 (in Chinese).
[3] WHO. IARC monographs on the evaluation of carcinogenic risks to humans; proceedings of the Conference of the IARC monographs on the evaluation of carcinogenic risks to humans, Lyon, FRANCE, F Oct 10-17, 2006 [C]. World Health Organization: GENEVA, 2010. [4] SGROI M, VAGLIASINDI F G A, SNYDER S A, et al. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal[J]. Chemosphere, 2018, 191: 685-703. doi: 10.1016/j.chemosphere.2017.10.089 [5] CHEN W H, WANG C Y, HUANG T H. Formation and fates of nitrosamines and their formation potentials from a surface water source to drinking water treatment plants in Southern[J]. Chemosphere, 2016, 161: 546-554. doi: 10.1016/j.chemosphere.2016.07.027 [6] KIM D, AMY G L, KARANFIL T. Disinfection by-product formation during seawater desalination: A review[J]. Water Research, 2015, 81: 343-355. doi: 10.1016/j.watres.2015.05.040 [7] WEBSTER T S, CONDEE C, HATZINGER P B. Ex situ treatment of N-nitrosodimethylamine (NDMA) in groundwater using a fluidized bed reactor[J]. Water Research, 2013, 47(2): 811-820. doi: 10.1016/j.watres.2012.11.011 [8] DAI X D, ZOU L D, YAN Z F, et al. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons[J]. Journal of Hazardous Materials, 2009, 168(1): 51-56. doi: 10.1016/j.jhazmat.2009.01.119 [9] SGROI M, ROCCARO P, OELKER G L, et al. N-nitrosodimethylamine (NDMA) formation at an indirect potable reuse facility[J]. Water Research, 2015, 70: 174-183. doi: 10.1016/j.watres.2014.11.051 [10] WANG X F, YANG H W, ZHOU B H, et al. Effect of oxidation on amine-based pharmaceutical degradation and N-Nitrosodimethylamine formation[J]. Water Research, 2015, 87: 403-411. doi: 10.1016/j.watres.2015.07.045 [11] SZCZUKA A, HUANG N, MacDONALD J A, et al. N-nitrosodimethylamine formation during UV/hydrogen peroxide and UV/chlorine advanced oxidation process treatment following reverse osmosis for potable reuse[J]. Environmental Science & Technology, 2020, 54(23): 15465-15475. [12] ALONSO F, BELETSKAYA I P, YUS M. Metal-mediated reductive hydrodehalogenation of organic halides[J]. Chemical Reviews, 2002, 102(11): 4009-4092. doi: 10.1021/cr0102967 [13] LI M H, HE J, TANG Y Q, et al. Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon[J]. Chemosphere, 2019, 217: 742-753. doi: 10.1016/j.chemosphere.2018.11.007 [14] YU L, LI D, XU Z Y, et al. Polyaniline coated Pt/CNT as highly stable and active catalyst for catalytic hydrogenation reduction of Cr(VI)[J]. Chemosphere, 2023, 310: 136685. doi: 10.1016/j.chemosphere.2022.136685 [15] STRUKUL G, GAVAGNIN R, PINNA F, et al. Use of palladium based catalysts in the hydrogenation of nitrates in drinking water: From powders to membranes[J]. Catalysis Today, 2000, 55(1/2): 139-149. [16] ZHOU J, HAN Y X, WANG W J, et al. Reductive removal of chloroacetic acids by catalytic hydrodechlorination over Pd/ZrO2 catalysts[J]. Applied Catalysis B:Environmental, 2013, 134/135: 222-230. doi: 10.1016/j.apcatb.2013.01.005 [17] WU K, ZHENG M J, HAN Y X, et al. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts[J]. Applied Surface Science, 2016, 376: 113-120. doi: 10.1016/j.apsusc.2016.03.101 [18] ZHENG C L, MAO D J, XU Z Y, et al. Strong Ru-CeO2 interaction boosts catalytic activity and stability of Ru supported on CeO2 nanocube for soot oxidation[J]. Journal of Catalysis, 2022, 411: 122-134. doi: 10.1016/j.jcat.2022.04.030 [19] RO I, RESASCO J, CHRISTOPHER P. Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts[J]. ACS Catalysis, 2018, 8(8): 7368-7387. doi: 10.1021/acscatal.8b02071 [20] WANG Z, HUANG Z P, BROSNAHAN J T, et al. Ru/CeO2 catalyst with optimized CeO2 support morphology and surface facets for propane combustion[J]. Environmental Science & Technology, 2019, 53(9): 5349-5358. [21] HUANG H, DAI Q G, WANG X Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B:Environmental, 2014, 158/159: 96-105. doi: 10.1016/j.apcatb.2014.01.062 [22] TAN H Y, WANG J, YU S Z, et al. Support morphology-dependent catalytic activity of Pd/CeO2 for formaldehyde oxidation[J]. Environmental Science & Technology, 2015, 49(14): 8675-8682. [23] DONG F, MENG Y, HAN W L, et al. Morphology effects on surface chemical properties and lattice defects of Cu/CeO2 catalysts applied for low-temperature CO oxidation[J]. Scientific Reports, 2019, 9: 12056. doi: 10.1038/s41598-019-48606-2 [24] GAO X Q, ZHU S H, DONG M, et al. Ru/CeO2 catalyst with optimized CeO2 morphology and surface facet for efficient hydrogenation of ethyl levulinate to γ-valerolactone[J]. Journal of Catalysis, 2020, 389: 60-70. doi: 10.1016/j.jcat.2020.05.012 [25] TAN L, LI T, ZHOU J, et al. Liquid-phase hydrogenation of N-nitrosodimethylamine over Pd-Ni supported on CeO2-TiO2: The role of oxygen vacancies[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 558: 211-218. [26] LIU P C, NIU R Y, LI W, et al. Morphology effect of ceria on the ammonia synthesis activity of Ru/CeO2 catalysts[J]. Catalysis Letters, 2019, 149(4): 1007-1016. doi: 10.1007/s10562-019-02674-1 [27] ASSMANN J, NARKHEDE V, KHODEIR L, et al. On the nature of the active state of supported ruthenium catalysts used for the oxidation of carbon monoxide: steady-state and transient kinetics combined with in situ infrared spectroscopy[J]. The Journal of Physical Chemistry B, 2004, 108(38): 14634-14642. doi: 10.1021/jp0401675 [28] YEE N, CHOTTINER G S, SCHERSON D A. Carbon monoxide adsorption on Ru-modified Pt surfaces: time-resolved infrared reflection absorption studies in ultrahigh vacuum[J]. The Journal of Physical Chemistry B, 2005, 109(12): 5707-5712. doi: 10.1021/jp044641i [29] FORCE C, BELZUNEGUI J P, SANZ J, et al. Influence of precursor salt on metal particle formation in Rh/CeO2 catalysts[J]. Journal of Catalysis, 2001, 197(1): 192-199. doi: 10.1006/jcat.2000.3067 [30] DONG Z P, LE X, DONG C X, et al. Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol[J]. Applied Catalysis B:Environmental, 2015, 162: 372-380. doi: 10.1016/j.apcatb.2014.07.009 [31] LIU H, LONG L, XU Z Y, et al. Pd-NCQD composite confined in SBA-15 as highly active catalyst for aqueous phase catalytic hydrodechlorination of 2, 4-dichlorophenoxyacetic acid[J]. Chemical Engineering Journal, 2020, 400: 125987. doi: 10.1016/j.cej.2020.125987 [32] 周娟, 陈欢, 李晓璐, 等. Pd/CeO2催化水中溴酸盐的加氢还原研究[J]. 中国环境科学, 2011, 31(8): 1274-1279. ZHOU J, CHEN H, LI X L, et al. Study on liquid phase catalytic hydrogenation of bromate over Pd/CeO2 catalyst[J]. China Environmental Science, 2011, 31(8): 1274-1279 (in Chinese).
[33] SUN Y H, SUN S, WU T Y, et al. Highly effective electrocatalytic reduction of N-nitrosodimethylamine on Ru/CNT catalyst[J]. Chemosphere, 2022, 305: 135414. doi: 10.1016/j.chemosphere.2022.135414 [34] LI M H, SUN Y H, TANG Y Q, et al. Efficient removal and recovery of copper by liquid phase catalytic hydrogenation using highly active and stable carbon-coated Pt catalyst supported on carbon nanotube[J]. Journal of Hazardous Materials, 2020, 388: 121745. doi: 10.1016/j.jhazmat.2019.121745