-
随着经济和城镇化的快速发展,空气污染问题开始出现,我国绝大多数城市空气污染已经由悬浮颗粒物(TSP)、可吸入颗粒物(PM10)及二氧化硫(SO2)为主的局部污染转向以细颗粒物(PM2.5)和污染气体(O3、NOX、SO2)为主的区域性复合型大气污染[1]. 颗粒物(PM)一直是导致空气污染的主要污染物之一,其中PM2.5是目前我国大多数城市的首要污染物. 其粒径较小,比表面积大、活性强,比较容易携带大量的有害物质并且在大气中停留时间长、输送距离远,经由呼吸道进入肺部深处及血液循环系统对人体健康产生巨大危害,不仅对人体健康的危害严重,同时导致能见度下降等现象是影响大气环境质量的重要因素[2]. 水溶性离子(WSII)包括SO42−、NO3−、NH4+、F−、Cl−、Na+、K+、Ca+、Mg2+等是PM2.5中的主要化学组分,SNA(SO42-、NO3−、NH4+)是污染过程中重要的化学物种,SNA主要以气态前体物SO2、NOX、NH3通过二次转化得来,在城市的尺度上来看,SO2、NOX的主要来源分别是固定源(燃煤)和移动源,NH3大部分来源来自于畜禽养殖,植物活动排放、农业活动(化肥施用、秸秆燃烧)排放、化工生产和废物处理等[3].
邯郸市本身的支柱产业(煤炭、钢铁和水泥等)均为高消耗、高排放的重工业,大量的能源消耗伴随着大量的污染物排放. 近些年来机动车拥有量也有着大幅度的增加,伴随着大量汽车尾气的排放,其他的各种社会活动排放的废气共同作用于邯郸市大气环境. 邯郸市地处河北省南端,跨东经114°03'—114°40',北纬36°20'—36°44'之间,温带大陆性季风气候,四季分明,西依太行山脉,东接华北平原,其独特地形会加剧城市污染[4]. 同时与晋、鲁、豫三省接壤,地处四省交界处,这四个省份均是工业排放大省,因此区域内传输对于邯郸市空气质量的影响不可忽视,大量的本地源污染物以及区域内传输共同的作用下,共同引发严重的空气污染事件[5].
目前针对水溶性离子的研究多集中在发达地区(京津唐地区、长江三角洲和珠江三角洲等区域),对于邯郸市大气PM2.5污染状况研究还不够充分,本文结合主成分分析(PCA)和后向轨迹聚类分析法,对采样期间大气污染过程中的PM2.5中水溶性离子浓度特征、污染特性、来源和外部的主要输送路径进行研究,为改善邯郸市空气质量提出切实有效的对策,为预防秋冬季污染提供有力依据.
邯郸市大气污染过程PM2.5中水溶性离子特征与来源解析
Characteristics and source analysis of water-soluble ions in PM2.5 during air pollution in Handan City
-
摘要: 为研究邯郸市污染过程大气PM2.5中水溶性离子浓度特征与来源,于2021年10—12月采集了大气PM2.5样品,并结合温度、相对湿度等气象因素以及气态污染物(SO2、NO2)浓度对水溶性离子进行分析. 结果表明,采样期间PM2.5浓度范围为(41.34—216.96)μg·m−3,浓度均值(111.12±38.6)μg·m−3;TWSII(总水溶性离子)质量浓度为(56.08±24.26)μg·m−3,其中主要离子物种SNA(SO42−、NO3−、NH4+)在TWSII中占比89.48%;PM2.5昼、夜浓度均值接近,其中NO3−、NH4+、SO42−、Ca2+、Na+和Mg2+的浓度白天高于夜晚,Cl−、K+和F−等离子则是夜晚浓度较高;AE/CE(阴阳离子电荷当量比)昼、夜比值分别为1.12、1.16,说明大气气溶胶呈酸性;依据相关性分析判断各个离子间的结合方式,NH4+与NO3-、SO42-之间具有显著相关性,结合经验公式计算结果确定铵盐主要存在状态为(NH4)2SO4和NH4NO3;采样期间SOR、NOR值分别为0.38、0.33(白天为0.38、0.38,夜间为0.37、0.28),说明存在明显的SO2和NO2二次转化过程,且NO3−/SO42−比值为1.88,说明移动源(机动车尾气排放)对于PM2.5的贡献大于固定源(燃煤);主成分分析结果表明,PM2.5水溶性离子主要来源有二次转化、生物质燃烧、固定源(燃煤)和扬尘源;后向轨迹模型中聚类分析得出,外部污染传输持续存在,整个采样过程中主要污染气团来源均为来自于偏西方向的短距离传输.Abstract: In order to study the characteristics and sources of water-soluble ions in atmospheric PM2.5 during the pollution process in Handan city, samples of atmospheric PM2.5 were collected from October to December 2021. The water-soluble ions were analyzed in combination with meteorological factors such as temperature, relative humidity and the concentrations of gaseous pollutants (SO2, NO2). The concentration range of PM2.5 during the sampling period is (41.34—216.96) μg·m−3, with the mean concentration of (111.12±38.6) μg·m−3. The mass concentration of TWSII (total water-soluble ions) was (56.08±24.26) μg·m−3, with the main ion species SNA (SO42−,NO3−,NH4+) accounting for 89.48%. The day and night concentrations of PM2.5 are simar. NO3−, NH4+, SO42−, Ca2+, Na+ and Mg2+ concentrations are higher during the day than at night, while Cl−, K+ and F− concentrations are higher at night. The day and night ratio of AE/CE (anion cation charge equivalent ratio) is 1.12 and 1.16, respectively, indicating that atmospheric aerosols are acidic. According to correlation analysis, there is a significant correlation between NH4+and NO3−, also with SO42−. Based on empirical formula calculations, the main existing states of ammonium salts are (NH4)2SO4 and NH4NO3. During the sampling period, the SOR and NOR values were 0.38 and 0.33, respectively (0.38 and 0.38 during the day, and 0.37 and 0.28 at night), indicating a significant secondary conversion process of SO2 and NO2. The NO3−/SO42− ratio was 1.88, indicating that the contribution of mobile sources (motor vehicle exhaust emissions) to PM2.5 was greater than that of fixed sources (coal combustion). The principal component analysis results indicate that the main sources of water-soluble ions in PM2.5 are secondary conversion, biomass combustion, fixed sources (coal combustion), and dust sources. The clustering analysis in the backward trajectory model shows that external pollution transmission persists, and the main source of pollution air mass is short distance transmission from the westward direction.
-
Key words:
- PM2.5 /
- water-soluble ions /
- source analysis /
- backward trajectory /
- Handan.
-
表 1 邯郸市S1和S2阶段PM2.5及水溶性离子浓度(μg·m−3)
Table 1. PM2.5 and water-soluble ion concentration in S1 and S2 stages of Handan City (μg·m−3)
离子组分
Ionic componentsS1(n=12) S2(n=21) 平均
AverageNa+ 0.97±0.07 0.91±0.10 0.94±0.10 K+ 0.40±0.14 0.38±0.19 0.39±0.17 Mg2+ 0.058±0.02 0.071±0.043 0.066±0.036 Ca2+ 1.14±0.36 1.78±1.33 1.52±1.09 F− 0.050±0.01 0.082±0.042 0.069±0.036 Cl− 2.28±1.41 3.37±2.074 2.92±1.89 NH4+ 13.01±4.75 11.27±6.85 11.99±6.13 SO42− 8.29±2.78 9.47±6.53 8.98±5.34 NO3− 34.97±15.12 25.14±12.64 29.20±14.55 PM2.5 111.82±31.43 110.12±38.6 111.12±38.6 表 2 采样期间昼夜水溶性离子浓度特征(μg·m−3)
Table 2. Day -Night water soluble ion concentration characteristics (μg·m−3)
离子组分
Ionic components昼
Day夜
NightNO3− 27.08±17.02 24.75±15.23 NH4+ 10.82±7.40 10.66±5.80 SO42− 8.11±6.24 7.70±5.24 Cl− 2.39±2.24 3.28±1.32 Ca2+ 2.13±1.40 1.55±1.25 Na+ 0.93±0.12 0.91±0.08 K+ 0.32±0.16 0.39±0.20 Mg2+ 0.079±0.036 0.062±0.035 F− 0.068±0.039 0.068±0.029 PM2.5 106.87±46.25 101.35±33.86 表 3 旋转因子载荷矩阵
Table 3. Rotation Factor Load Matrix
离子组分
Ionic components因子1
Factor1因子2
Factor2因子3
Factor3NH4+ 0.955* −0.097 0.113 NO3− 0.886* 0.029 −0.145 K+ 0.882* 0.14 0.064 Ca2+ −0.848 0.341 0.167 SO42− 0.838* −0.247 0.339 Mg2+ −0.747 0.515 0.197 Na+ 0.519 0.655* −0.07 F− −0.021 0.599* 0.59* Cl− 0.524 0.156 0.612* 特征值 5.495 1.85 1.35 方差贡献率/% 49.96% 16.82% 12.28% 累计方差贡献率/% 49.96% 66.78% 79.06% 污染源 二次转化、生物质燃烧 扬尘源 固定源(燃煤)、生物质燃烧 注:*,为该因子中载荷量较大的组分载荷量. Note:*, is the load of the component with larger load in the this factor 表 4 PM2.5后向轨迹聚类分析
Table 4. Clustering analysis of PM2.5 backward trajectory
S1/2 占比 /%
Proportion路径
Path浓度/(μg·m−3)
Concentration聚类1 54.17 陕西北部-山西南部-邯郸 109.6 聚类2* 9.72 哈尔滨—吉林—辽宁—渤海—山东—河北 58.3 聚类3 15.28 蒙古国与甘肃交界处—内蒙古—陕西北—山西中—邯郸 130.3 聚类4 20.83 蒙古国与内蒙古交界处—内蒙古—河北中—邯郸 141.1 聚类1 37.50 内蒙古西南—甘肃北—宁夏北—陕西北—山西中—邯郸 120.5 聚类2 22.22 内蒙古南—宁夏北—陕西北—山西南—河南北—邯郸 144.2 聚类3 40.28 山西南—河南北—邯郸 153.6 注:*,该聚类低于国标二级日均值标准75 μg·m−3.
Note:*, This cluster was lower than the national standard secondary daily mean value of 75μg·m−3 -
[1] 曹军骥. PM2.5与环境[M]. 北京: 科学出版社. 2014: 67-154. CAO J J. PM2.5 and Environment[M]. Beijing: Science Press. 2014: 67-154(in Chinese).
[2] 郦嘉诚, 高庆先, 李亮, 等. 对首要污染物所揭示的京津冀环境空气质量状况的认识启迪与对策建议[J]. 环境科学研究, 2018, 31(10): 1651-1661. LI J C, GAO Q X, LI L, et al. Enlightenment and suggestions on the air quality of Beijing, Tianjin and Hebei revealed by primary pollutants[J]. Research of Environmental Sciences, 2018, 31(10): 1651-1661(in Chinese).
[3] 陈新星, 李洁, 张良瑜, 等. 南京市冬季PM2.5中水溶性离子污染特征研究[J]. 环境监测管理与技术, 2022, 34(2): 12-15,26. doi: 10.3969/j.issn.1006-2009.2022.02.003 CHEN X X, LI J, ZHANG L Y, et al. Pollution characteristics of water-soluble ions in PM2.5 in winter in Nanjing[J]. The Administration and Technique of Environmental Monitoring, 2022, 34(2): 12-15,26(in Chinese). doi: 10.3969/j.issn.1006-2009.2022.02.003
[4] 宁伟征, 狄世英, 刘焕武, 等. 邢台市采暖季PM2.5中水溶性离子污染特征及来源分析[J]. 环境监测管理与技术, 2020, 32(4): 61-64. NING W Z, DI S Y, LIU H W, et al. Pollution characteristics and sources analysis of water-soluble inorganic ions in PM2.5 during heating season in Xingtai[J]. The Administration and Technique of Environmental Monitoring, 2020, 32(4): 61-64(in Chinese).
[5] 孟琛琛, 王丽涛, 张芬芬, 等. 邯郸市PM2.5中水溶性无机离子污染特征及来源解析[J]. 环境科学学报, 2015, 35(11): 3443-3451. MENG C C, WANG L T, ZHANG F F, et al. Pollution characteristics and source apportionment of water soluble inorganic ions in PM2.5 in Handan City[J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3443-3451(in Chinese).
[6] 牛红亚, 史沥介, 任秀龙, 等. 燃煤城市及其周边地区“双代”后大气环境颗粒物的化学特征[J]. 煤炭学报, 2022, 47(12): 4362-4374. NIU H Y, SHI L J, REN X L, et al. Chemical characteristics of particulate matter in the atmospheric environment after “coal substitution” policy in coal combustion cities and their surrounding areas[J]. Journal of China Coal Society, 2022, 47(12): 4362-4374(in Chinese).
[7] 杨铁金, 王慧超, 李红梅, 等. 辽宁西南典型城市冬季大气细颗粒物水溶性无机离子污染特征及来源解析[J]. 环境化学, 2022, 41(1): 160-172. doi: 10.7524/j.issn.0254-6108.2020090602 YANG T J, WANG H C, LI H M, et al. Characteristics and source analysis of water-soluble inorganic ion pollution of fine atmospheric particles in winter in typical cities of southwest Liaoning Province[J]. Environmental Chemistry, 2022, 41(1): 160-172(in Chinese). doi: 10.7524/j.issn.0254-6108.2020090602
[8] 牛宏宏, 王宝庆, 刘博薇, 等. 天津冬季PM2.5中水溶性无机离子污染特征研究[J]. 环境污染与防治, 2019, 41(5): 592-595. NIU H H, WANG B Q, LIU B W, et al. Characteristics of water-soluble inorganic ions in PM2.5 during winter in Tianjin[J]. Environmental Pollution & Control, 2019, 41(5): 592-595(in Chinese).
[9] 闫广轩, 张靖雯, 雷豪杰, 等. 郑州市大气细颗粒物中水溶性离子季节性变化特征及其源解析[J]. 环境科学, 2019, 40(4): 1545-1552. YAN G X, ZHANG J W, LEI H J, et al. Seasonal variation and source analysis of water-soluble inorganic ions in fine particulate matter in Zhengzhou[J]. Environmental Science, 2019, 40(4): 1545-1552(in Chinese).
[10] 宗梁, 刘迎云, 姜雨, 等. 衡阳城区冬季PM2.5中水溶性离子污染特征[J]. 中国环境监测, 2020, 36(3): 42-48. ZONG L, LIU Y Y, JIANG Y, et al. Characteristics of water-soluble ion pollution in PM2.5 in winter of Hengyang city[J]. Environmental Monitoring in China, 2020, 36(3): 42-48(in Chinese).
[11] 郝新妮, 肖浩, 李亲凯, 等. 天津冬夏季PM2.5中二次无机离子的特征及重污染事件分析: 基于连续两年的观测[J]. 环境化学, 2022, 41(10): 3288-3298. doi: 10.7524/j.issn.0254-6108.2021063006 HAO X N, XIAO H, LI Q K, et al. Characteristics of secondary inorganic ions in PM2.5 and study of heavy pollution events in winter and summer in Tianjin—Based on observations for two consecutive years[J]. Environmental Chemistry, 2022, 41(10): 3288-3298(in Chinese). doi: 10.7524/j.issn.0254-6108.2021063006
[12] 余学春. 北京PM2.5水溶性物种污染特征及来源解析[D]. 北京: 清华大学, 2004. YU X C. Determination and characterization of water-soluble species of PM2.5 in Beijing[D]. Beijing: Tsinghua University, 2004(in Chinese).
[13] 衣雅男, 侯战方, 孟静静, 等. 聊城市冬季PM2.5中水溶性化合物的昼夜变化特征及来源解析[J]. 环境科学, 2019, 40(10): 4319-4329. YI Y N, HOU Z F, MENG J J, et al. Diurnal variations and source analysis of water-soluble compounds in PM2.5 during the winter in Liaocheng city[J]. Environmental Science, 2019, 40(10): 4319-4329 (in Chinese).
[14] ZHOU J B, XIONG Y, XING Z Y, et al. Characterizing and sourcing ambient PM2.5 over key emission regions in China II: Organic molecular markers and CMB modeling[J]. Atmospheric Environment, 2017, 163. [15] 葛琳琳, 郑元铸, 涂圣锋, 等. 温州市PM2.5中水溶性离子污染特征及来源分析[J]. 浙江大学学报(理学版), 2017, 44(1): 112-120. GE L L, ZHENG Y Z, TU S F, et al. Characteristics and sources apportionment of water-soluble ions in PM2.5 of Wenzhou, Zhejiang Province[J]. Journal of Zhejiang University (Science Edition), 2017, 44(1): 112-120 (in Chinese).
[16] 张敬巧, 王淑兰, 罗达通, 等. 聊城市冬季PM2.5及水溶性离子污染特征及来源分析[J]. 环境科学研究, 2018, 31(10): 1712-1718. ZHANG J Q, WANG S L, LUO D T, et al. Characterization and source analysis of PM2.5 and water-soluble ions during winter in Liaocheng city[J]. Research of Environmental Sciences, 2018, 31(10): 1712-1718 (in Chinese).
[17] HUANG D S, XU J H, ZHANG S Q. Valuing the health risks of particulate air pollution in the Pearl River Delta, China[J]. Environmental Science and Policy, 2011, 15(1):38-47. [18] GUO W, ZHANG Z Y, ZHENG N J, et al. Chemical characterization and source analysis of water-soluble inorganic ions in PM2.5 from a plateau city of Kunming at different seasons[J]. Atmospheric Research, 2020, 234:104687. [19] 孙有昌, 姜楠, 王申博, 等. 安阳市大气PM2.5中水溶性离子季节特征及来源解析[J]. 环境科学, 2020, 41(1): 75-81. SUN Y C, JIANG N, WANG S B, et al. Seasonal characteristics and source analysis of water-soluble ions in PM2.5 of Anyang city[J]. Environmental Science, 2020, 41(1): 75-81 (in Chinese).
[20] 郭新彪, 魏红英. 大气PM2.5对健康影响的研究进展[J]. 科学通报, 2013, 58(13): 1171-1177. doi: 10.1360/972013-147 GUO X B, WEI H Y. Progress on the health effects of ambient PM2.5 pollution[J]. Chinese Science Bulletin, 2013, 58(13): 1171-1177 (in Chinese). doi: 10.1360/972013-147
[21] 任秀龙, 牛红亚, 李淑娇, 等. 邯郸市大气细颗粒物中水溶性离子的污染特征及来源解析[J]. 环境化学, 2021, 40(11): 3510-3519. doi: 10.7524/j.issn.0254-6108.2020070301 REN X L, NIU H Y, LI S J, et al. Pollution characteristics and source of water-souble ions in atmospheric fine particles in Handan City[J]. Environmental Chemistry, 2021, 40(11): 3510-3519 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020070301
[22] 刘寿东, 张莉, 张园园, 等. 温湿度对南京北郊PM2.5中二次无机离子生成演化的影响[J]. 生态环境学报, 2018, 27(4): 714-721. LIU S D, ZHANG L, ZHANG Y Y, et al. Influences of temperature and humidity on formation and evolution of secondary aerosol inorganic ions of PM2.5 at northern suburban Nanjing[J]. Ecology and Environmental Sciences, 2018, 27(4): 714-721 (in Chinese).
[23] KATO N. Analysis of structure of energy consumption and dynamics of emission of atmospheric species related to the global environmental change (SOx , NOx , and CO2 ) in Asia[J]. Atmospheric Environment, 1996, 30(5):757-785. [24] 林瑜, 叶芝祥, 杨怀金, 等. 成都市西南郊区春季大气PM2.5的污染水平及来源解析[J]. 环境科学, 2016, 37(5): 1629-1638. LIN Y, YE Z X, YANG H J, et al. Pollution level and source apportionment of atmospheric particles PM2.5 in southwest suburb of Chengdu in spring[J]. Environmental Science, 2016, 37(5): 1629-1638 (in Chinese).
[25] 牛红亚, 高娜娜, 鲍晓磊等. 2016—2020年邯郸市冬季PM2.5污染特征与来源解析[J]. 环境科学,2023, 44(12): 6463-6473. NIU H Y, GAO N N, BAO X L, et al. Characteristics and Sources of PM2.5 Pollution in Winter of Handan City from 2016 to 2020[J]. Environmental Science,2023, 44(12): 6463-6473(in Chinese).
[26] 任秀龙, 胡伟, 吴春苗, 等. 华北南部重污染城市周边区域二次气溶胶的化学特征及来源解析[J]. 环境科学, 2022, 43(3): 1159-1169. REN X L, HU W, WU C M, et al. Chemical characteristics and sources of atmospheric aerosols in the surrounding district of a heavily polluted city in the southern part of North China[J]. Environmental Science, 2022, 43(3): 1159-1169 (in Chinese).
[27] 刘慧, 夏敦胜, 陈红, 等. 2017年兰州市大气污染物输送来源及传输特征模拟分析[J]. 环境科学研究, 2019, 32(6): 993-1000. LIU H, XIA D S, CHEN H, et al. Simulation analysis of sources and transmission characteristics of air pollutants in Lanzhou city in 2017[J]. Research of Environmental Sciences, 2019, 32(6): 993-1000 (in Chinese).